Amos 1.3 index



Amos 1.3 index

] COLLABORATORS
TITLE :
Amos 1.3 index
ACTION NAME DATE SIGNATURE
WRITTEN BY November 15, 2022
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME




Amos 1.3 index iii

Contents
1 Amos 1.3 index 1
1.1 Index . . . o e e e 1
1.2 theeditor . . . . . . . . 21
1.3 keyboard macros . . . . . . .. e e e e e e e e e e e 23
14 scan$ . . . . 23
1.5 closeworkbench . . . . . . .. 23
1.6 closeeditor . . . . . . . . . . . 23
1.7 setbuffer . . . . . . . . 24
1.8 free . . . . 24
1O dim . .. 24
LI0 data . . . . 24
LIL read . . . . . o 24
LI2 1eftd . . o 25
L13 right$ . . o 25
L14 midS$ . . . o e 25
LS NSt . o . o o e e e e 25
L16 upperS . . . o 25
L7 TowerS . . o o e 25
LIS flipd . . o o 26
19 space$ . . . . o 26
120 String$ . . . . o e 26
L21 chr$ . . o 26
122 @5C . . o oo 26
L23 1en . . . .o 26
124 val . .o 26
L25 StrS . o e 26
1.26 sOTt . . o L e 26
127 match . . . . 27
L28 INC . . . o 27

1.29 dec . . . . o e 27




Amos 1.3 index iv

130 add . . . . e 27
L31 aC0S . . . 27
1.32 COS . o o e 27
L33 tan . . . . 28
134 SIN . .o e e 28
L35 atan . . . . . 28
1.36 hSin . . . o e 28
137 hcos . . . . o 29
138 htan . . . . . o e e 29
1.39 degree . . . . . o e e e e e e 29
140 radian . . . . . .o e e e 29
LAL Tog . . o 29
142 XP. o o o e e e 30
LA3 In . . 30
LA4 DI . o o e 30
1AS SQU . . o o e e e 30
TAG abs . . . . o e 30
LAT INt .. oo 30
148 sgn. . o o e e 31
149 tnd . . . o 31
1.50 randomize . . . . . ... e 31
151 max . ... 31
152 min .. o e e e 31
153 SWaD . . . o o e e e e 31
154 fiX . o 32
155 deffn . . . 32
156 1 . . e 32
1.57 poke . . . o e e e e 32
1.58 peek . . . . o e 33
1.59 hunt . . . . 33
1.60 10l . . . e e 33
161 hex$ . . o o o 33
162 bInS . . . . 33
1.63 Varptr . . . . e e e e e e e e 34
1.64 COPY . . . o e 34
1.65 fill . . o o 34
1.66 DUSt. . . o o e e e 34
1.67 DSt . . . o e 35

1.68 belr . . o e 35




Amos 1.3 index v

1.69 bchg . . . o o 35
L70 areg . . . o o e e e e e e e 35
171 pload . . . . 36
L72 call. . . o 36
1.73 doscall . . . . . . 37
L74 TeStOre . . . . . . e e 37
175 walt . .o e 37
L76 tMEr . . . . . . e 37
L77 not . oo e 38
L78 true . . . . . 38
179 false . . . . . 38
1.80 procedure . . . . . . . . e e e e e e 38
181 end proc . . . . . . o e e 38
1.82 global . . . . . 39
1.83 shared . . . . . . . L e 39
L84 param . . . . . .. e e e e 39
1.85 pOpProc . . o . o o e e e 39
1.86 OO . . . o e e e e e e 39
1.87 gosub . . . . 39
L.88 return . . . . . . 40
1.89 POp . . o e 40
1.90 if...then...[else] . . . . . . . . e e e 40
191 fOornext . . . . . o o e e e e e 40
1.92 while..wend . . . . . .. 40
1.93 repeat..until . . . . .. e 40
1.94 do..loop . . . . o e e e 41
195 ©Xit . . o e 41
196 edit . . . . . 41
L.O7 direct . . . . . . . e 41
198 System . . . . . . e e e e e e e e e 41
1.99 end. . . . . e 41
LI000ON...PTOC . . o . o e o e e e e e e e e e e e e 41
1.1010n...80t0 . . . . . L e 42
1.1020n...20SUb . . . oL L 42
1.103every ngosub . . . . .. e 42
1.104break on-off . . . . . . . 42
1.1050n error Goto . . . . .. L e e 42
LIOOIESUME . . . . . . o o e e e e e e e 43

1107errn . . . . o e e e e e e s 43




Amos 1.3 index Vi

TI0Berror . . . . o o e e e 43
L109memory banks . . . . . . . L L e e e e e e e e e e e e e 43
LIIOTESEIVE . . . o o o o o e e e e e e 43
LITIlistbank . . . . o o o o e e 44
TII2erase . . . . o o o e e e e e 44
LII3Start . . . . o e e e e 44
L114length . . . . o o 44
LI15load . . . . . e e 44
LA16SaVe . . . . o e 45
LITTDSaVe . . . o o e e e e 45
L118bload . . . . . 45
LITOSCIEEN OPEN . . . . v o v v o e e e e e e e e e e e e e e e e e e e e e e e e 45
1.120screen Close . . . . . . . oL e e e e e 46
LI21Auto VIEBW . . . . o o o e e e e e e e e e e 46
1.122default . . . . . L 46
LA23VIBW . . o o o e e e e e e 46
1.124load iff . . . . . . L 46
1125save iff . . . . o e e 47
1.126screen display . . . . . . . L e 47
1.127screen offset . . . . . . . L e e e 47
1.128screenclone . . . . . . . oL e e e e e 47
1.129dual playfield . . . . . . . oL e e e 47
1.130dual priority . . . . . . . . e e e e e 48
LABLSCreen . . . . . o oo e e e 48
1.132screento front . . . . . . . . L L e e e e 48
1.133screentoback . . . . . . e 48
1.134screen hide . . . . . . . o L L e e 49
1.135screen show . . . . . . oL e e 49
1.136screen height . . . . . . . . oL e 49
1.137screen width . . . . . . o o oL e e e 49
1.138screen colour . . . . . . L e e e e e e e 49
1.139scin . . L o e 49
1.140default palette . . . . . . . . L e e 49
L14lgetpalette . . . . . . . e e 50
LA42CIS . o o 50
1143SCreen COPY « . . v v v v e e e e e e e e e 50
1.144screen base . . . . . . . L e e e 50
1.145def scroll . . . . . L e e 51

1.146scroll . . . o 51




Amos 1.3 index Vii

TLIATSCreen SWap . . . . . o o o ot e e e e e e e e e e e 51
1.148logbase . . . . . . . e e e 51
1.149phybase . . . . . . .. e 52
LISOphysic . . . . . . 52
LASTIOQIC . . o o 52
LIS2wait vbl . . . 52
153appear . . . . . . . e e e e 53
LIS4fade . . . . . . 53
LASSflash . . . 53
LIS6shiftup . . . . . e 53
LAS7shiftdown . . . . . o o o 54
LIS8shiftoff . . . . . e 54
1.159zoom . . . .o 54
1.160cop logic . . . . o o o e e e 54
L161cop mOvVe . . . . . L L e e 54
1.162copmovel . . . . . . L e e e e e e e 55
1163CopIeset . . . . . o o e 55
LI64COP WALt . . . . o v o o e e e e e e e e e e e e 55
1.165copper off . . . . . L 56
LI6OCOP SWAD . . . o v o o e e e e e e e e e e e e e 56
L167COPPErOn . . . . o o o e e 56
1.168spack . . . . e e e e 56
L.169pack . . . . o e e 57
1170unpack . . . . L e e e e 57
LAT71pen. . . o o e e e 57
LAT2paper . . . o e e e e e e e e e e 57
1.173inverse on-off . . . . . L 58
1.174shade on-off . . . . . . . 58
1.175under on-off . . . . . . 58
LITOWIItING . . . . o o o e e e e e e e e e e e e e 58
LA77locate . . . . . . o L e e e 58
LIT8CMOVE . . . . o o oo e 58
L179at . . o e 59
LIBOX tEXt . . . o e 59
1A81Ix graphic . . . . . . . e 59
LI82Zhome . . . . . . 59
1.183cdown . . . . Lo e 59
L184cdown$ . . . . L 59

LA85cup . . . o e e 60




Amos 1.3 index viii

LIB6CUPS . . o o 60
LABTcleft . . o o e e 60
LABBCIeftS . . . . 60
LI8Ocright . . . . o e e e 60
L190crightS . . . . . o e 60
LIOIX CUIS . . o o o e e e e e e 60
119286t CUIS . . o o o o e e e e e e 61
L.193curs on-off . . . . . L L e 61
1.194memorize . . . . . . ... e 61
L195remember . . . . . ... e e e e 61
1.196Cline . . . . . . L 61
LAOTCUIS PN . . . o o o e e e e e e e e e e e 61
1.198centre . . . . . L. e e e 62
L199settab . . . . . o e e 62
1.200tab$ . . . . 62
L200repeatS . . . . . . o e 62
1.202inkey$ . . . . . 62
1.203scancode . . . . ... e e e 62
1.204key State . . . . . o o e e e e e e e e 63
1.205key shift . . . . . . L e e 63
1.206Set input . . . . . . L e e e 63
L2070nputS(n) . . . o o o e e 63
1.208wait key . . . . . . o 63
1.200key speed . . . . . L e e e e 64
1.210clearkey . . . . . . L. 64
L210putkey . . o o e e 64
L212I0pUt . . . L o e e e e e e e 64
L213Hne input . . . . . o o e e e e e e e e 64
L2T4print . . . . o o o e e e e e 65
L2I5print uSing . . . . . o o v e e e e e e e e e e e e e e 65
1.216zone$ . . . . . 65
L217borderS . . . . 65
1.218hscroll . . . o o o e e e 65
1.219vscroll . . o . e 66
L220teXt . . o o e e 66
1221 get fonts . . . . . o o e e 66
1.222get disc fONts . . . . . . oL e e e 66
1.223getrom fonts . . . . . . e e e 67

1.224font$ . . . . L 67




Amos 1.3 index ix

1.225setfont . . . . L 67
LT226SELIEXE . . . o o o ot e e e e e e e e e e e e 67
1.227text Styles . . . . o o e 67
1.228text length . . . . . . L L e e e e e 68
1.220teXtbase . . . . . . o e e e e e 68
L.230WInd Open . . . . . . . o e e e e e e e e e e e e e 68
1.231wind save . . . . . . . e 68
1.232border . . . . . e e e e 68
1.2336HIe tOP . .« . o o o e 69
1.234title bottom . . . . . . L L e e e e e 69
1.235wWIndow . . . . L L 69
1.236=windon . . . . . . .. L e e e 69
1.237wind close . . . . . . .. e 69
1238WINA MOV . . . . . . o o o e e e e e e 69
1.230wind size . . . . . .. e 70
L240CIW . . o o o e 70
1.241hslider . . . . . . L L 70
1.242vslider . . . . o L e 70
1.243set slider . . . . . . . . 70
1.24400K . . . L e 70
1.245colour . . . . oL e e e 71
1.246=colour . . . . . ... e 71
1.247palette . . . . . . . e e e e 71
1.248grlocate . . . . . . L e e e e e 71
L.240XEr . . L L e 71
1.250pIot . . o e 72
L251point . . . o o e e 72
1.252draw . . . . e e 72
1.253D0X . . o o 72
1.254polyline . . . . . . o e e e e e e e 72
1.255circle . . . . e e e e 72
1.2566llipse . . . . o o e e e e 73
1.257setline . . . . . o o o o e e e 73
1.258paint . . . . . e e e e e e e e e e 73
1.259bar . . . . L 73
1.260polygon . . . . . e e 73
1.261setpattern . . . . . . . . e e e e 74
1.262Set paint . . . . . . o e e e e e e e e e e e e 74

1.263gr Writing . . . . . . . e e e e e 74




Amos 1.3 index X

L264Clip . . . o 75
L265SPIIteS . . . v o o v e e e e e e e e e e e e 75
L.260SPIite . . . . . o e 75
1.267getsprite palette . . . . . . . . . e e e e e e e e e e e e 76
1.268set sprite buffer . . . . . . . . L 76
1.269sprite off . . . . . . . e e 76
1.270sprite update . . . . . . .. e e e 76
L2TIX SPIItE . . o o o ot e e e e e e e e e e e e e 76
L2728EtSPIIte . . . . . o o o e e e e e 77
L273del Sprite . . . . . o o o e e e e e e e e e e e 77
T2TAXSCIEEN . . . . o o o o i e e e e e e 77
L275x hard . . . . e e e 77
L2761 SPrite . . . . . o o o e e 77
L2TTSprite base . . . . . . o o e e e e e e e e e e e e 77
L1.278b0b . . . 78
1.279double buffer . . . . . ... e 78
1.280setbob . . . . . . 78
1.281nomask . . . . . L e e 79
1.282autoback . . . . . .o 79
1.283bobupdate . . . . . . .. e e e e e 80
1.284bobclear. . . . . . . L e e 80
1.285bob draw . . . .. L e e e 80
1.286XDOb . . . 81
1.2871b0b . . o o e 81
1.288Lmitbob . . . . . . L e 81
1.289getbob . . . . . e e e e 81
1.290putbob . . . . 82
1.291paste bob . . . . . L e e e 82
1.292bob off . . . . L 82
1.293hide . . . . e 82
1.294show . . . L o o e e 83
1.295change moUSe . . . . . . . .. e e e e e 83
1.296mouse key . . . . ... e 83
1.297Tmouse click . . . . . . . e 83
1.2908XmMOUSE . . . . L L e e e 83
L299IMIt MOUSE . . . . . o v ottt e e e e e e e e e e 84
1.300J0Y . . o o o 84
L3005left . . o o e e 84




Amos 1.3 index Xi

LT303JUP . . o e e 84
L304jdown . . . .. 85
LT305ire . . . o e e 85
1.306sprite COl. . . . . . . o e e e e e e 85
1.307bob col . . . e 85
1.308spritebob cOl. . . . . . . e e e e e e e e e e 86
1.309bobsprite col. . . . . . . e 86
L310col . . . 86
L31Thot spot . . . o o o e e e e 87
I312make mask . . . . . . . L 87
L313reserve Zone . . . . . . . oL e e e 87
L314setzone . . . . . . . . 87
1.315zone . . . . . Lo 88
L1.316hzone . . . . . . L 88
1.317mouse Zone . . . . . . .. e e e 88
L3IBreset Zone . . . . . o o o L i 88
1.319priority on-off . . . . . . 88
1.320update . . . . . e e e e e e 89
1.321paste 1CON . . . . o o o e e e e e e e e e e 89
1.32280tICON . . . . L . e e e e e e e e e e 89
1.323geticon palette . . . . . . . . ... e e e 89
1.324delicon . . . . .o 89
1.325make icon mask . . . . . .. e 90
1.326iconbase . . . . .. 90
1.327getblock . . . . . . o e e 90
1.328putblock . . . . . 90
1.329del block . . . . . o 90
1.330getcblock . . . . . oL e e 90
1.331putcblock . . . . . L e 91
1.332del cblock . . . . . 91
1.333boom . . . L. e 91
1.334shoot . . . . . . oo 91
1.335bell . . e 91
1.336volume . . . . .o e 91
1.337samplay . . . . . . .. e 91
1.338sambank . . . .. 92
1.339samraw . . . ..o e e e e 92
1.340sam I00p . . . . . . o e e e e e 92

1341play . . . . e e 92




Amos 1.3 index Xii

1.342set wave . . . . ... e e 92
L343wave . . . . . 93
1344N0ISE . . . . o o o e e e 93
L345del wave . . . . . . 93
1.346sample . . . . . . L L e 93
L34T7setenvel . . . . . . 93
1.348say . . . . L e e 94
L349settalk . . . . . . L 94
1350mUSIC . . . . o e e e e e e e e 94
L351mMUSIC StOP . .« . v v o o e e e e e e e e e e e e e 94
1.352music off . . . . L 95
L353temMPO . . . o o e e e e e e e e 95
1.354mvolume . . . ... e e 95
L355v0ice . . . . . L 95
1.356vumeter . . . . . ... e e e 95
L357Ied . . . 95
L358menu$ . . . . .o 96
1.359menuon . . . .. 96
1.360ch0iCe . . . . . . o o e e e e e 96
1.3610N MENU PIOC . . . . o v o et e e e e e e e e e e e e e e e e e e 96
1.3620n menu gOSub . . . ... L e e 97
1.3630n MeNU GO0 . . . . . . e e e e e e e e e e e e e e e e e 97
1.36don menu on-off . . . . L 97
1.365onmenudel . . . . . 97
1.366menukey . . . .. .. L 97
1.367menuoff . . . . . . 98
1.368menudel . . . . . . e 98
1.369menutobank . . . . .. 98
1.370bank tomenu . . . . . . . L e e 98
137Imenucalc . . . . . . e 99
1.372menuinactive . . . . . . . e e e 99
1.373menuactive . . . . . . e e e e e 99
1.374menuline . . . . . . . . e 99
1.375menutline . . . . . . o 99
1.376menubar . . . . ... e 99
1.377menumovable . . . . . .. 100
1.378menu static . . . . ... e e e 100
1.379menu Separate . . . . . . . .. e e e e e e e e e e e e e e e e e e 100

1.380menu link . . . . . L e e 100




Amos 1.3 index Xiii

1.38Imenubase . . . . . . e e 100
L382setmenu . . . . . . . L 100
1.383menumouse . . . . . .. e e 101
I.384menucalled . . . . . . . . . L 101
1.385menuitem movable . . . . . ... 101
[.386menuitem Static . . . . . . .. L L e 101
1.387mMenuonce . . . . . . . . e e 101
L38B8menu X . . . . . 102
1.389embedded menu commands . . . . . . ..o Lo e 102
L390dir . . . . . 103
L391dIrS . . o o 103
L1.302parent . . . . . .. e e e e e e e e e e 103
1.393set dir . . . . e e e e e 103
L1.394dfree . . . . . . 104
1.395mKdir . . . .o e 104
L396KIIl . . . . 104
1.397rename . . . . . . ... e 104
L398fSelS . o o e 104
1.3901Un © . ... e e e 104
LAOOCXISt . . . . o o e 105
LAOLdIr firstS . . . . o o o 105
LA02dir next$ . . . . . . 105
1.4030pen out . . . . . .o e e e e e e e e e e 105
1404append . . . . . . . o e e e e e e e e 105
LAOS0Pen in . . . . . o e e e e e 105
1A060PEN POTL . . . o v o ot e e e e e e e e e e e e e 106
LAOTPOIt . . o o e 106
1.408open random . . . . .. L. e e e e e e e e e e e e 106
LA0Ofield . . . . . e e 106
LAT0Zet . . . o 106
LALIPUL . . o e e e 107
LAL12CI0Se . . . o o o e 107
LAL3print# . . . . o e e e 107
LALAINPUME . . . . . o 107
LALSHne inputf . . . . . . . e e e 107
LALOINPULS . . . o o e 108
LALTeof . . o e e 108
LALI8IOf . . o 108

LA10pOf . . o e e 108




Amos 1.3 index Xiv

LA20Iprint . . . . . . o e e 108
LA2IIAIT . . o oo o e e e e 108
1.422amal important info . . . . . . .. L L L 109
1.423(@mal) MOVE . . . . . . . e e e e e e 109
1.424(amal) anim . . . . . . ... e e e 109
L425@@mal) let . . . . . L e e e e 110
1.426(amal) Jump . . . . . .. e e 110
LA27(@amal) if . . . . . o e e e 110
1.428(amal) for to next . . . . . . . . L. e e e 110
L429(amal) play . . . . . . . e e e e e 111
1.430(@mal)end . . . . . . . . . e e e e e 111
LA431(amal) pause . . . . . . . . e e e e e e e e 111
1.432(amal) autotest . . . . . . . . . e e e e e e e 112
1.433(amal function) =Xm . . . . . . . ... e e e e e e 113
1.434(amal function) =ym . . . . . . . ... L e e e 113
1.435(amal function) =K1 . . . . . . . . e e e e 113
1.436(amal function) =K2 . . . . . . . L L e 113
1.437(amal function) =j0 . . . . . .. L e e e e e 113
1.438(amal function) =j1 . . . . . . .. L. e e 113
1.439(amal function) =z(N) . . . . . . . . . . e e e e e 113
1.440(amal function) =xh (S,X) . . . . . . . . L. e 113
1.441(amal function) =yh (S,y) . . . . . o . o o e e e e e e e 114
1.442(amal function) =XS(S,X) . . . . .t ot e e e e e e 114
1.443 (amal function) =yS(S,X)  « . v ¢ v v v e e e e e e e e e e e e e e e e e e e 114
1.444(amal function) =bob col(n,s,€) . . . . . . . . . .. 114
1.445(amal function) =sprite COI(N,S,€) . . . . . .« v v v i i e e e e e e e e e e e e e 114
1.446(amal function) =C(N) . . . . . . . . . i e e e e e e e e e e e e e 114
1.447(amal function) =V(V) . . . . . . . . L e e e e e e e e e e e 115
L448amal . . . . . . . 115
L449amalon . . . . .. L e e 115
1.450amal freeze . . . . . . . oL e e e 115
1.A451amreg . . . . . . . e e e e e e e 116
L452amplay . . . . . . L e 116
1.453chanan . . . . . . L L 116
1.454chanmyv . . . . L L L e e 117
LA4SSamalerr . . . . . L e e 117
1.456channel . . . . . . L 117
1.457channel ntO SPrite S . . . . . . o o o i e e e e e e e e e e e e e e e e e e 117

1.458channel ntobob b . . . . . . . . e 117




Amos 1.3 index XV

1.459channel nto screendisplay d . . . . . . . .. 118
l.460channel ntoscreenoffsetd . . . . . . . . . . L 118
1.461channel ntO SCIEEN SIZE S . . . . . . v v v v i it it e e e e e e e e e e e e 118
l.462channel ntorainbow r . . . . . . L L L L e e e 118
1.463update eVery . . . . . . . . e e 118
LAGATain . . . . . e e e 119
1.4651ainbow . . . . Lo L e 119
L1466set rainbow . . . . . L L L e e 119
1467synchro . . . . . . . . e 120
LAGBMOVE X . . . o o ot e e e e e e e 120
1.469move on-off . . . . ... L e 121
LATOmMoOve freeze . . . . . . . o e e e e e 121
1A71mOovon . . . . . L e e e 121
LAT2anim . . . . . oo e e e e e 121
1473anim on-off . . . . . .. L 122
LA4T74anim freeze . . . . . . . . . o e e e 122
1.475track load . . . . . . L e e 122
LATOtrack play . . . . . . o e e e e e 123
1477track loop on-off . . . . . . L L 123
1A78track StOp . . . . . o e e e e e e e e 123
1.479important tracker NOLES: . . . . . . . . . . L. e e e e e e 123
1.480sload . . . . . L 124
1A8Tsam swap . . . . . . L e e e e 124
1.482sam swapped . . . . . . e e e e e e 125
1.4835amstop . . . . . . L. e 125
1.484author note on =col(bob) . . . . . . . . .. e 126
1.485discinfoS . . . . . 127
1ABOPIE State . . . . . . o e e e e e e e e e e e e 128
1.487bgrab . . . . e 128
1A8Bprun . . . . . e e e e e 128
LASIPIrE firstS . . . . o o 128
1490prg nextd . . . .. 129
LAOIpselS . . . . o e 129
1.492getting the System time . . . . . . . . . .o e e e e e e e e 129
1.493getting the system date . . . . . . . . . L e 130
1.494safe amigados XeCULe . . . . . . . . .. e e e e e e 130
1.495noicon mask . . . . L. e e 130
1.496rainbow del . . . . . .. e e e 131

1.497multi Wait . . . . . . L e e e 131




Amos 1.3 index XVi

1498amostoback . . . . . . . e 131
1.499amos to front . . . . . . L e e e e 131
1.500amos here . . . . . . . . L e e e 132
1.50Tamos lock . . . . . oL e 132
1.502amos unlock . . . . ... e 132
1.503bank SWap . . . . .o L e e e e e e e e 132
L504laced . . . . . . o e e 132
1.505display height . . . . . . . . . L e 133
L5S06NESC . . o o e 133
LS07request ON . . . . o v o o e e e e e e e e e e e e e 134
1.508request off . . . . . L. 134
1.509request Wb . . . . o 134
1.510bob-sprite flipping . . . . . . . . .. e e e 135
LS51Threvblock . . . . . . o o e e 139
1.512vrev block . . . . L o 139
1.513(bob) priority reverse on-off . . . . .. ... 139
LST4serial Open . . . . . . o o o e e e e e e e e e e 140
1.515serial close . . . . . o . e e e 141
1.516serial send . . . . . . ... e 141
LS517serial out . . . . . L L e e 141
LSI8serial et . . . . . o o o o e e e e e e e 142
L519serial input$ . . . . . . L e 142
1.520serial speed . . . . . . L. e e e 142
L1521serial bits . . . . . . L e e e e 142
1.522serial parity . . . . . . .. e e e e e e e e e e e 143
1.523serial X . . . . L 143
1.524serial buffer . . . . . . . . e 143
[.525serial fast . . . . . L e e e e 144
1.526serial slow . . . . . o L e e 144
1.527serial check . . . . . . . L L e 144
1.528serial €rror . . . . ... e e e 145
1.529serial sending tips . . . . . . . . i e e e e e e e e e e e e e 145
1.530dev first$ . . . . 145
1.531dev nextS . . . . . e 146
LI.532SBLLEMPIAS . . . v v o v v e e e e e e e e e e e e e e e e e e e e e e e e e e 146

1.533rem . . . o e e e e 146




Amos 1.3 index

1/146

Chapter 1

Amos 1.3 index

1.1

Index

(Amal

(Amal

(Amal

(Amal

(Amal

(Amal

(Amal

(Amal

(Amal

(Amal

(Amal

(Amal

(Amal

(Amal

(Amal

(Amal)

(Amal)

(Amal)

Function)

Function)

Function)

Function)

Function)

Function)

Function)

Function)

Function)

Function)

Function)

Function)

Function)

Function)

Function)

AUtotest

Anim

End

=Bob Col(n,s,e)

=C (n)

=J0

=J1

=K1

=K2

=Sprite Col(n,s,e)

=V (v)

=XH (s, Xx)

=XM

=XS (s, x)

=YH (s,Vy)




Amos 1.3 index 2/146

(Amal) For To Next

(Amal) If

(Amal) Jump

(Amal) Let

(Amal) Move

(Amal) PLay

(Amal) Pause

(Bob) PRIORITY REVERSE ON-OFF
=COLOUR

=WINDON

ABS

ACOS

ADD

AMAL FREEZE

AMAL OFF

AMAL ON

AMAL

AMALERR

AMOS HERE

AMOS LOCK

AMOS TO BACK

AMOS TO FRONT

AMOS UNLOCK

AMPLAY

AMREG

ANIM FREEZE

ANIM OFF

ANIM ON

ANIM ON-OFF




Amos 1.3 index 3/146

ANIM

APPEAR

APPEND

AREG

ASC

AT

ATAN

AUTO VIEW

AUTOBACK

Amal Important Info

Author Note on =COL (Bob)

BANK SWAP

BANK TO MENU

BAR

BCHG

BCLR

BELL

BGRAB

BINS

BLOAD

BOB CLEAR

BOB COL

BOB DRAW

BOB OFF

BOB UPDATE

BOB

BOB/SPRITE FLIPPING

BOBSPRITE COL

BOOM




Amos 1.3 index

4/146

BORDER

BORDERS

BOX

BREAK OFF

BREAK ON

BREAK ON-OFF

BSAVE

BSET

BTST

CALL

CDOWN

CDOWNS

CENTRE

CHANAN

CHANGE MOUSE

CHANMV

CHANNEL n To

CHANNEL n To

CHANNEL n To

CHANNEL n To

CHANNEL n To

CHANNEL n To

CHANNEL

CHOICE

CHRS

CIRCLE

CLEAR KEY

CLEFT

BOB b

RAINBOW r

SCREEN

SCREEN

SCREEN

SPRITE

DISPLAY d

OFFSET d

SIZE s




Amos 1.3 index 5/146

CLEFTS

CLINE

CLIP

CLOSE EDITOR

CLOSE WORKBENCH

CLOSE

CLS

CLW

CMOVE

COL

COLOUR

COP LOGIC

COP MOVE

COP MOVEL

COP RESET

COP SWAP

COP WAIT

COPPER OFF

COPPER ON

COPY

Cos

CRIGHT

CRIGHTS

CUP

Cuprs

CURS ON-OFF

CURS PEN

DATA

DEC




Amos 1.3 index

6/146

DEEK

DEF FN

DEF SCROLL

DEFAULT PALETTE

DEFAULT

DEGREE

DEL BLOCK

DEL CBLOCK

DEL ICON

DEL SPRITE

DEL WAVE

DEV FIRSTS$

DEV NEXTS$

DFREE

DIM

DIR FIRSTS

DIR NEXTS$

DIR

DIRS

DIRECT

DISC INFOS

DISPLAY HEIGHT

DO

DO...LOOP

DOKE

DOSCALL

DOUBLE BUFFER

DRAW




Amos 1.3 index 7 /146

DREG

DUAL PLAYFIELD

DUAL PRIORITY

EDIT

ELLIPSE

ELSE

END IF

END PROC

END

EOF

ERASE

ERRN

ERROR

EVERY OFF

EVERY ON

EVERY n GOSUB

EVERY n PROC

EXECALL

EXIST

EXIT IF

EXTIT

EXP

Embedded Menu Commands

FADE

FALSE

FIELD

FILL

FIRE

FIX




Amos 1.3 index

8/146

FLASH

FLIPS

FN

FONTS

FOR

FOR. . .NEXT

FREE

FSELS

GET BLOCK

GET BOB

GET CBLOCK

GET DISC FONTS

GET FONTS

GET ICON PALETTE

GET ICON

GET PALETTE

GET ROM FONTS

GET SPRITE PALETTE

GET SPRITE

GET

GFXCALL

GLOBAL

GOSUB

GOTO

GR LOCATE

GR WRITING

Getting the system date

Getting the system time




Amos 1.3 index

9/146

HCOS

HEXS$

HIDE

HOME

HOT SPOT

HREV BLOCK

HSCROLL

HSIN

HSLIDER

HTAN

HUNT

HZONE

I BOB

I SPRITE

ICON BASE

IF

IF...THEN

INC

INK

INKEYS

INPUT

INPUT#

INPUTS

INPUTS (n)

INSTR

INT

INTCALL

... [ELSE]

INVERSE ON-OFF

Important Tracker Notes:




Amos 1.3 index

10/ 146

JDOWN

JLEFT

Joy

JRIGHT

JUP

KEY SHIFT

KEY SPEED

KEY STATE

KEYS

KILL

Keyboard Macros

LACED

LDIR

LED

LEEK

LEFTS

LEN

LENGTH

LIMIT BOB

LIMIT MOUSE

LINE INPUT

LINE INPUT#

LISTBANK

LN

LOAD IFF

LOAD

LOCATE

LOF




Amos 1.3 index 11/146

LOG

LOGBASE

LOGIC

LOKE

LOOP

LOWERS

LPRINT

MAKE ICON MASK

MAKE MASK

MATCH

MAX

MEMORIZE

MENU ACTIVE

MENU BAR

MENU BASE

MENU CALC

MENU CALLED

MENU DEL

MENU INACTIVE

MENU ITEM MOVABLE

MENU ITEM STATIC

MENU KEY

MENU LINE

MENU LINK

MENU MOUSE

MENU MOVABLE

MENU OFF

MENU ON

MENU ONCE




Amos 1.3 index

12/ 146

MENU SEPARATE

MENU STATIC

MENU TLINE

MENU TO BANK

MENU X

MENU Y

MENUS

MIDS

MIN

MKDIR

MOUSE CLICK

MOUSE KEY

MOUSE ZONE

MOVE FREEZE

MOVE OFF

MOVE ON

MOVE ON-OFF

MOVE X

MOVE Y

MOVON

MULTI WATIT

MUSIC OFF

MUSIC STOP

MUSIC

MVOLUME

Memory Banks

NEXT

NO ICON MASK




Amos 1.3 index

13/ 146

NO

MASK

NOISE

NOT

NTSC

ON ERROR GOTO

ON

ON

ON

ON

ON

ON

ON

ON

ON..

ON..

ON..

ERROR PROC

MENU

MENU

MENU

MENU

MENU

MENU

MENU

OPEN IN

OPEN

OPEN

OPEN

PACK

PATINT

PALETTE

PAPER

PAPERS

PARAM

PARAM#

PARAMS

PARENT

ouT

DEL

GOSUB

GOTO

OFF

ON

ON-OFF

PROC

.GOSUB

.GOTO

.PROC

PORT

RANDOM




Amos 1.3 index

14 /146

PASTE BOB

PASTE ICON

PEEK

PEN

PENS

PHYBASE

PHYSIC

PI#

PLAY

PLOAD

PLOT

POF

POINT

POKE

POLYGON

POLYLINE

POP PROC

POP

PORT

PRG FIRSTS$S

PRG NEXTS

PRG STATE

PRINT USING

PRINT

PRINT#

PRIORITY OFF

PRIORITY ON

PRIORITY ON-OFF




Amos 1.3 index

15/ 146

PROCEDURE

PRUN

PSELS

PUT BLOCK

PUT BOB

PUT CBLOCK

PUT KEY

PUT

RADIAN

RAIN

RAINBOW DEL

RATINBOW

RANDOMIZE

READ

REM

REMEMBER

RENAME

REPEAT

REPEATS

REPEAT...UNTIL

REQUEST OFF

REQUEST ON

REQUEST WB

RESERVE ZONE

RESERVE

RESET ZONE

RESTORE

RESUME

RETURN




Amos 1.3 index

16/ 146

RIGHTS

RND

ROL

ROR

RUN

SAM BANK

SAM LOOP

SAM PLAY

SAM RAW

SAM STOP

SAM SWAP

SAM SWAPPED

SAMPLE

SAVE IFF

SAVE

SAY

SCANS

SCANCODE

SCIN

SCREEN

SCREEN

SCREEN

SCREEN

SCREEN

SCREEN

SCREEN

SCREEN

SCREEN

BASE

CLONE

CLOSE

COLOUR

COPY

DISPLAY

HEIGHT

HIDE

OFFSET




Amos 1.3 index 17 /146

SCREEN OPEN

SCREEN SHOW

SCREEN SWAP

SCREEN TO BACK

SCREEN To FRONT

SCREEN WIDTH

SCREEN

SCROLL

SERTIAL BITS

SERIAL BUFFER

SERIAL CHECK

SERTIAL CLOSE

SERIAL ERROR

SERIAL FAST

SERTIAL GET

SERIAL INPUTS

SERTIAL OPEN

SERIAL OUT

SERIAL PARITY

SERTIAL SEND

SERIAL SENDING TIPS

SERIAL SLOW

SERIAL SPEED

SERIAL X

SET BOB

SET BUFFER

SET CURS

SET DIR

SET ENVEL




Amos 1.3 index 18/ 146

SET FONT

SET INPUT

SET LINE

SET MENU

SET PAINT

SET PATTERN

SET RAINBOW

SET SLIDER

SET SPRITE BUFFER

SET TAB

SET TALK

SET TEMPRAS

SET TEXT

SET WAVE

SET ZONE

SGN

SHADE ON-OFF

SHARED

SHIFT DOWN

SHIFT OFF

SHIFT UP

SHOOT

SHOW

SIN

SLOAD

SORT

SPACES

SPACK




Amos 1.3 index

19/ 146

SPRITE

SPRITE

SPRITE

SPRITE

SPRITE

SPRITE

SQOR

START

STEP

STRS

BASE

COL

OFF

UPDATE

BOB COL

STRINGS

SWAP

SYNCHRO

SYSTEM

Safe AmigaDos EXECUTE

Sprite
TABS
TAN
TEMPO
TEXT B
TEXT L
TEXT S
TEXT
THEN
TIMER
TITLE
TITLE
TRACK

TRACK

S

ASE

ENGTH

TYLES

BOTTOM

TOP

LOAD

LOOP ON-OFF




Amos 1.3 index

20/ 146

TRACK PLAY

TRACK STOP

TRUE

The Editor

UNDER ON-OFF

UNPACK

UNTIL

UPDATE EVERY

UPDATE

UPPERS

VAL

VARPTR

VIEW

VOICE

VOLUME

VREV BLOCK

VSCROLL

VSLIDER

VUMETER

WAIT KEY

WAIT VBL

WATT

WAVE

WEND

WHILE

WHILE...WEND

WIND CLOSE

WIND MOVE




Amos 1.3 index

21/146

1.2 the editor

WIND OPEN

WIND SAVE

WIND SIZE

WINDOW

WRITING

X BOB

X CURS

X GRAPHIC

X HARD

X MOUSE

X SCREEN

X SPRITE

X TEXT

XGR

Y BOB

Y CURS

Y GRAPHIC

Y HARD

Y MOUSE

Y SCREEN

Y SPRITE

Y TEXT

YGR

ZONE

ZONES$

ZOOM




Amos 1.3 index

22/146

Function keys: fl1 - f10

Blocks Menu
Fold/Unfold

Indent
Overwrite

Run Test
Run Other Edit Other

With Shift or Right Mouse.
Save As Merge

(Function Keys)
Load Save

Search Menu
Line Insert

Merge ASCII

Ac.New/Load Load Others New Others New Quit
(Function Keys) With Ctrl.

Block Start Block Cut Block Move Block Hide Save ASCIT
Block End Block Paste Block Store Block Save Block Print
(Function Keys) With Alt.

Find Find Next Find Top Replace Replace All
Low<>Up Open All Close All Set Text B. Set Tab
Special Editor Keys and Functions

Esc Toggle Direct Mode and Edit Screen
Shift+Back or Ctrl+Y Delete current line and pull up text
Ctrl+U Undo, when in Overwrite mode

Ctrl+Q Erase text from cursor to end of line
Ctrl+I Insert line at cursor

Cursor Keys

Shift+Left Previous word
Shift+Right Next word
Shift+Up Top of page
Shift+Down Bottom of page
Ctrl+Up Up one page
Ctrl+Down Down one page
Shift+Ctrl+Up Top of text
Shift+Ctrl+Down Bottom of text

Program Control
AmigatP
Amiga+F Flip between two programs in memory
Amiga+T Display next program

Cut and Paste

Ctrl+B Set beginning of block
Ctrl+E Set end of block
Ctrl+C Cut block

Ctrl+M Move block

Ctrl+s Save block

Ctrl+P Paste block

Ctrl+H Hide block
Marks

Ctrl+Shift+n Set mark. n = 0 to 9

Ctrl+n Goto mark n

Search/Replace

Alt+Up Search up for next label or procedure
Alt+Down Search down for next label or procedure
Ctrl+F Find text string

Push program into memory and create a new one




Amos 1.3 index 23 /146

Ctrl+N Find next string
Ctrl+R Replace text
Tabs

Tab Move to next tab

Shift+Tab Move to last tab
Ctrl+Tab Set/Unset Tab

1.3 keyboard macros

Key$ (n) =command$
command$=Key$ (n)

Assign Macro in command$ to function key n. Keys 11-20 are accessed

by holding down the left Amiga key at the same time. Alt. + ’ will be
interpreted as a return.

1.4 scan$

x$=Scans$ (n[,m])

n is the scancode of a key to be used in a macro string and m is a
mask to set special keys.

Bit Special Key

Left Amiga
Right Amiga

0 Left SHIFT key

1 Right SHIFT key

2 Caps Lock (ON or OFF)
3 Control

4 Left Alt

5 Right Alt

6

7

1.5 close workbench

Saves about 40k of memory.

1.6 close editor

Saves about 28k of memory.




Amos 1.3 index 24 /146

1.7 set buffer

Set Buffer n

n represents the variable buffer size in kilobytes. Must be the first
line in your program excluding REMs

1.8 free

t=Free

Returns amount of available wvariable space

1.9 dim

Dim var(x,v,z,...) [,vars$(x,y),var# (x)]
This creates a table of variables or strings for usage. These tables
may have as many dimensions as you want, but each dimension is limited

to a maximum of 65,000 elements.

In order to access an element in an array you simply put the element’s
(x,y) in brackets after the variable name.

Example: aS$=var$ (x,y) a=var (1, 3)

See your manual pages 35-38 for variable definations.

1.10 data

Data list of items|[,more items]
This statement allows you to set up date fields to be read in by the

READ
command. Please Note, if the data field is without quotes, it
may be mistaken for a variable or expression.

For further notes on
READ
and
DATA
types check your manual page 256.

1.11 read




Amos 1.3 index 25/ 146

Read list of variables
Read will read to the list of variables a list of data items. These
items MUST be the same type [string or variable] otherwize an error will

occur.

Also see

RESTORE
and
DATA
For further notes, see page 256 of your
manual.
1.12 left$

d$=Left$(s$,n) or Left$(d$,n)=s$

1.13 right$

d$=Right$(s$,n) or Right$(d$,n)=s$

1.14 mid$

d$=Mid$ (s$,p,n) or Mid$(dS$,p,n)=s$

If n is not specified then from p to end of string will be affected.

1.15 instr

f=Instr(ds$,s$ [,pl)

Search for s$ in d$. p is the starting position of the search.

1.16 upper$

s$=Upper$ (n$) Convert n$ into all upper case.

1.17 lower$

s$=Lowers$ (n$) Convert n$ into all lower case




Amos 1.3 index 26 /146

1.18 flip$

f$=F1lip$ (n$) Reverse order of n$

1.19 space$

s$=Space$ (n) s$ will be a string of n spaces

1.20 string$

s$=String$ (a$, n) s$ will be the first character of a$ repeated n times
1.21 chr$

s$=Chr$ (n) Return ASCII character n
1.22 asc

c=Asc (a$) Return ASCII code for a$
1.23 len

1=Len (a$) Return length of a$

1.24 val

v=Val (x$) Convert string to a number
1.25 str$

s$=Str$ (x) Convert number to a string
1.26 sort

Sort a(0) Sort a#(0) Sort a$(0)

Sorts array a in ascending order. " (0)" must be included




Amos 1.3 index

27 /146

1.27 match

r=Match(t (0),s) r=Match(t#(0),s#) r=Match(t$(0),s$)

Search array t for s and return position to r

1.28 inc

Inc var Add one to var (faster then var=var+l)

1.29 dec

Dec var Subtract one from var (faster then wvar=var-1)

1.30 add

Add v,exp [,base To top] (eg. Add v,150) v must be an integer
The second version of ADD works like so:
v=v+a

If v<Base Then v=Top
If v>Top Then v=Base

1.31 acos

c#=Acos (n#)

The ACOS function takes a number between -1 & +1 and calculates the
angle which would be needed to generate this value with

COos
1.32 cos
c#=Cos (a)
c#=Cos (a#)
The cosine function computes the cosine of an angle. Normally all
angles are measured in
RADIAN
s. This may be changed using the
DEGREE

command.




Amos 1.3 index 28 /146

1.33 tan
t#=Tan (a)
t#=Tan (a#)
TAN generates the tangent of an angle. Examples:
Degree
Print
Tan (45)
0.9999998
Radian
Print
Tan (
Pi#
/8)
.04141
1.34 sin
s#=Sin (a)
s#=Sin (a#)
The Sin function calculates the sine of the angle in a. Note that this

function always returns a floating point number.

1.35 atan

t#=Atan (n#)

ATAN returns the Arc
Tan
gent of a number.

1.36 hsin

s#=Hsin (a)
s#=Hsin (a#)

HSIN computes the hyperbolic
sin
e of angle a.




Amos 1.3 index 29/ 146

1.37 hcos

c#=Hcos (a)
c#=Hcos (a#)

HCOS computes the hyperbolic co
sin
e of angle a.

1.38 htan

t#=Htan (a)
t#=Htan (a#)

HTAN computes the hyperbolic
tan
gent of angle a.

1.39 degree

Degree

Generally all angles are specified in

RADIAN

S. Since radians are rather
difficult to work with, it’s possible to instruct AMOS to accept angles
in degrees. From the execution point of DEGREE, AMOS will expect
DEGREES instead of

RADIAN

S to all TRIG functions.

1.40 radian

Radian

The Radian command instructs that AMOS is to receive all angles in

Radians. [This is the default.] Also see
DEGREE

1.41 log

r#=Log (v)

r#=Log (v#)

LOG returns the logarithm in base 10 (LOG10) of the expression in v/vi#.




Amos 1.3 index 30/ 146

1.42 exp

r#=Exp (e#)

Calculates exponential of e#.

1.43 In

r#=Ln (14#)

LN computes the natural or naperian
log
arithm of 1#.

1.44 pi#

a#=Pi# Gives the value for pi.

1.45 sqr

(Square root)

s#=Sgr (v) Returns the square root of v.

1.46 abs

(Absolute value)

r=Abs (v)
r#=Abs (V#)

Removes signs, so -1 would be 1.

1.47 int

(Convert floating point to integer)

i=Int (v#) If v#=1.32 Then i=1




Amos 1.3 index 31/146

1.48 sgn

(Find the sign of a number)
s=Sgn (v)

Returns -1 if negative, 0 if 0, 1 if positive

1.49 rnd

v=Rnd (n)

Returns a random number between 0 and n inclusive. If n is less then 0
then the last random number will be repeated.

1.50 randomize

Randomize seed

Set seed for random number generator. Common pratice is Randomize
Timer

1.51 max

r=Max (x,Vy) R#=Max (x#,y#) r$=Max (x$,yS$)

Returns the largest value of either x or y.

1.52 min

r=Min (x,Vy) r#=Min (x#, y#) r$=Min (x$,v$)

Returns smallest value of either x or y.

1.53 swap

Swap X,y Swap x#,v# Swap x$,vy$

Swap data between two variables of the same type.




Amos 1.3 index

32/ 146

1.54 fix

Fix (n)

Changes how floating point numbers are displayed.
If 0<n<l1l6 then n number of decimal places will be displayed.

If n>16 then printout will be proportional and trailing zeros removed.

If n=16 then format will be returned to normal
If n<0 then floating point numbers will be displayed in exponential
format and n determines the number of decimal places displayed.

1.55 deffn

Def Fn name [ (list)]=expression
User defined function. name is the name used to call the function,
list contains a list of variables separated by commas to be used in

the function, and expression is one line of functions.
(eg. Def Fn Do_math (x,y,z)=10 » x + z / y )

1.56 fn

Fn name [ (variable list)]

Execute user defined function. name is the name of the function and
variable list contains values to be passed to the function.

1.57 poke

Poke address, v
Will place value v [l byte only] into memory location address.

Doke address, v
Will place value v [2 bytes long] into memory location address.
Address MUST be even or a crash will occur.

Loke address,v
Will place value v [4 bytes long] into memory location address.

Address MUST be even or a crash will occur.

WARNING: Poking anything into the Amiga is DANGEROUS if you are NOT

perfectly sure you’re actually going where you want, so test
your address in your program by printing it to the screen and

doing a

WAIT KEY

prior to the Poke/Doke/Loke, so you can
Ctrl-C the program, Jjust incase the Address is wrong.




Amos 1.3 index 33/ 146

1.58 peek

v=Peek (address)
Will return the value from address [l byte only] into v.

v=Deek (address)

Will return the value from address [2 bytes long] into v.

Address MUST be even or a crash will occur.

v=Leek (address)

Will return the value from address [4 bytes long] into v.

Address MUST be even or a crash will occur.

Note for LEEK: If bit 31 of the returned value is on, then v will show

as being negative. [Bit 31 is the sign bit, 0 for
positive and 1 for negative.]

1.59 hunt

f=Hunt (start To finish, s$)

HUNT will search memory from start TO finish for s$. If s$ is found, £
will hold the memory address of the start of s$, if not, f will hold O.

1.60 rol

ROR Rotate Bits Right
ROL Rotate Bits Left

.B Byte. [ 8 bits]
.W Word. [16 bits]
.L Long. [32 bits]

Rol.B n,v Will rotate the lowest 8 bits left one. %10010000=%00100001
Ror.B n,v Will rotate the lowest 8 bits right one. %10010000=%01001000

With .W [Word] and .L [Long], you can rotate more bits.

1.61 hex$

h$=Hex$ (v [,places])

Set h$ to the hex value of v with places digits in length.

1.62 bin$




Amos 1.3 index

34 /146

b$=Bin$ (v [,places])

Set b$ to the binary value of v with places digits in length.

1.63 varptr

address=Varptr (v)
address=Varptr (v$)

Returns the address of variable v. Each type of variable is stored
using its own format:

Integers: VARPTR finds the address of the four bytes containing the
contents of your variable.

Floating point: VARPTR returns the location of four bytes which hold
the value of the variable in the IEEE single precision format.

Strings: The VARPTR address points to the first character of the
string. Since AMOS Basic does not end its strings with a

Chr$

(0), you

must obtain the length of the string using something like:

Deek (Varptr (a$)-2), where a$ is the name of your variable. You could
also use

(as) .

1.64 copy

Copy start,finish To destination

Move a section of data in memory. The addresses must be even.

1.65 fill

Fill start To finish, pattern

Fill an area of memory with the four bytes in pattern. The addresses
must be even.

1.66 btst




Amos 1.3 index

35/146

b=Btst (n, v)

Test the binary digit at position n in the variable v. If it is 1,
then a value of -1

TRUE

) will be returned.

1.67 bset

Bset n,v

Set the bit at position n in variable v to 1.

1.68 bclr

Bclr n,v

Set the bit at position n in variable v to O.

1.69 bchg

Bchg n,v

NOT the value of the bit at position n in variable v.

One byte Two bytes Four bytes
PEEK
DEEK LEEK
POKE
DOKE LOKE
1.70 areg

Areg(r)=a
a=Areg (r)

Areg () 1s a PSEUDO register to the 68000 chip’s A0O-A6 Address Registers.

Amos allows writing (Areg(r)=a

= only to registers 0-2, but allows
reading (a=Areg(r)) for all 0-

)
6.
Dreg(r)=a

a=Dreg (a)

Dreg() 1s a PSEUDO register to the 68000 chip’s DO-D7 Data Registers.




Amos 1.3 index

36/ 146

Amos allows reading and writing from all 8 of these registers.

Notes: When the AMOS commands

Call

4

Doscall

,Execall,Gfxcall, Intcall
are executed, Areg(0)->Areg(2) and Dreg(0)->Dreg(7) are passed
to the 68000’s REAL registers. Upon exit of the routine, Amos
will read the 68000’s REAL registers back into Areg(0)->Areg(2)
and Dreg(0)->Dreg(7). Also, Areg(3)->Areg(7) are reserved for
use by Amos.

1.71 pload

Pload "filename",bank
Reserves the selected memory bank and loads it with machine code.

bank is the bank number to be reserved for your machine code program.

If it’s negative, then the bank will be calculated using the absolute

value of this number and the required memory area will be allocated in
Chip memory.

Once you’ve loaded a program in this way, you can save it on disk as a
normal ".Abk" file, since the banks created in this manner are
permanent. It will always be saved with your Amos program.

Your program must consist of machine code in standard Amiga format with
the following restrictions:

o The code MUST be relocatable, as it will be positioned at the first free
memory location which is available. [And probably never the same place

twice.]
o Only the CODE chunk of your program will be loaded.

o The program MUST terminate with a single RTS instruction.

1.72 call

Call address|[,params]
Call bank[,params]

Execute a machine code program at address or start of bank.
See

Areg
/Dreg for details on Register usage.

Note, when machine code is running, all registers are available for use,




Amos 1.3 index 37 /146

except A7 [Areg(7)].

A3 holds the address to the start of the params list.

All params will be pushed onto the stack at address A3. Retrieving them
requires you to read pull them in reverse. [See Manual Page 285 for

more information.]

A5 holds the address to the start of the MAIN Amos data area.

1.73 doscall

Before attempting these commands, be sure to observe warnings and
guidelines written in the Amiga ROM Kernel Manuals [RKMs].

x=Doscall (offset) Execute a Dos Library call.
x=Execall (offset) Execute an Exec Library call.
x=Gfxcall (offset) Execute a Graphics Library call.
x=Intcall (offset) Execute an Intuition Library call.

For information on Registers, see
Areg
/Dreg.

offset should be negative. Although the RKMs show them as being
positive, they are indeed supposed to be negative.

You should only attempt these commands if you’re familar with the
Amiga’s ROMs.

1.74 restore

Restore label Restore lable$ Restore line Restore number

1.75 wait

Wait n

n is measured in 50ths of a second.

1.76 timer

v=Timer
Timer=v

TIMER is a reserved variable which is incremented by 1 every 50th of a
second. It’s most commonly used to help bring a random number:




Amos 1.3 index 38/ 146

Randomize
Timer

1.77 not

v=Not (d)

This does the same as an "Exclusive OR" which changes all the bits in a
digit to their opposite.

d=%101 : wv=Not (d)
Print

d

d will have %$1111111111111010

1.78 true
v=True Returns a value of -1. [Try—- a=0
Print
a=0]
1.79 false
v=False Returns a value of 0.

1.80 procedure

HELLO Procedure HELLO pass no values to procedure
HELLO[n$, 25] Procedure HELLO[Name$, x] pass values to procedure

1.81 end proc

End Proc
End Proc[variable]
End Proc[variable$]

End a Procedure. Optional variables can be passed [ONLY one]. See

PARAM
or PARAMS for more information.




Amos 1.3 index 39/ 146

1.82 global

Global variable list

Let procedures use all variables in the wvariable list.

1.83 shared

Shared variable list
Used inside of a procedure, lets procedure use program variables.
Similiar to

GLOBAL
but is contained to current procedure only.

1.84 param

Param, Param#, Param$

Lets a procedure store a value into the appropriate PARAM that can be
accessed by the main program. This value is entered by the

End Proc

command. (eg.

End Proc

[a$+bS$+gS$]) Only one value can be returned.

1.85 pop proc

Pop Proc

Jumps out of procedure

1.86 goto

Goto label Goto line number Goto variable Goto exp

(eg. Goto START_UP Goto 210 Goto x Goto a$ + "Hello" )
1.87 gosub

Gosub label Gosub line number Gosub variable Gosub exp




Amos 1.3 index

40/ 146

1.88 return

Return

Exit from a subroutine. Must be present in all subroutines.

1.89 pop

Pop

Removes the return address generated by a

GOSUB
and allows you to exit
the subroutine any way you like. (eg. IF x=1 Then Pop : Goto label

1.90 if...then...[else]

If conditions Then statements 1 [Else statements 2]

If...[Else]...End If
If tests=
TRUE
list of statements 1
Else
list of statements 2
End If

Note: It is illegal to use an IF...THEN...ELSE inside an
IF...ELSE...END IF structured test.

1.91 for...next

For index = first To last [Step inc] : list of statements : Next index

1.92 while...wend

While condition : list of statements : Wend

1.93 repeat...until

Repeat : list of statements : Until condition

)




Amos 1.3 index 41 /146

1.94 do...loop

DO : list of statements : LOOP

1.95 exit
Exit [n]

Jumps out of the following structures:
FOR...NEXT

4

REPEAT...UNTIL

4

WHILE...WEND
and
DO...LOOP
If n is stated then EXIT will Jjump out of
n number of nested structures.

Exit If
Exit If expression [,n]

1.96 edit

Stops program and enters AMOS Basic editor.

1.97 direct

Stops program and enters DIRECT mode.

1.98 system

Exits Amos immediately. Closing any open files/screens/etc in the
process.

1.99 end

Stops program.

1.100 on...proc

On v Proc procl, proc2, proc3, ... proc n

Note: You can not pass parameters to a procedure using this command.




Amos 1.3 index

42 /146

1.101 on...goto

On v
Goto
linel, line2, line3, ... line n

1.102 on...gosub

On v
Gosub
linel, line2, line3, ... line n

1.103 every n gosub

Every n
Gosub
label

Subroutine label will be executed every n 50ths of a second. Your
subroutine must be completed in less then this time. After a
subroutine has been entered, the system will be automatically
disabled. The EVERY ON command must be used before the

RETURN

statement in your subroutine.

Every n Proc
Every n Proc name

Every On Every Off Toggles automatic procedures and subroutines.

1.104 break on-off

Break On Break Off

Activate/deactivate the Ctrl+C function.

1.105 on error goto

On Error Goto label

On Error Proc
On Error Proc name

When an error occurs, the program will Jjump to the
Goto
/Proc.




Amos 1.3 index 43 /146

Also see

RESUME
1.106 resume
Resume Continue with same command program errored with.
Resume Next Continue 1 command after the command that caused the error.
Resume line Continue at "line". [Program must have line numbers.]
Resume label Continue at label.

1.107 errn

e=Errn

Returns the last error number.

1.108 error

Error n

Creates error number n.

1.109 memory banks

Types of memory banks

Class Stores Restrictions Type

Sprites Sprites and Bobs Only bank 1 Permanent
Icons Icons Only bank 2 Permanent
Music Sound Tracks Only bank 3 Permanent
Amal Amal data Only bank 4 Permanent
Samples Sample data Banks 1 - 15 Permanent
Menu Menu definition Banks 1 - 15 Permanent
Chip Work Temp workspace Banks 1 - 15 Temporary
Chip Data Perm workspace Banks 1 - 15 Permanent
Work Temp workspace Banks 1 - 15 Temporary
Data Perm workspace Banks 1 - 15 Permanent

1.110 reserve

Reserve AS type,bank, length [See
Memory Banks
for more.]




Amos 1.3 index 44 /146

1.111 listbank

Listbank List banks in use [See
Memory Banks
for more.]

1.112 erase

Erase b Erase data in bank b [See
Memory Banks
for more.]

1.113 start

s=Start (b) s will hold the starting address of bank b

[See
Memory Banks
for more.]

1.114 length

l1=Length(b) 1 will hold the length of bank b. If bank b contains
sprites or BOBs then the number of images will be returned.

[See
Memory Banks
for more.]

1.115 load

Load "filename"[,n]

If filename contains more then one bank then ALL existing banks will
be erased. If n is given then only bank n will be overwritten. If
filename is sprite or bob data then if n=0 current sprite data will be
lost; if n=1 then new sprite data will be appended to current data.

[See
Memory Banks
for more.]




Amos 1.3 index 45/ 146

1.116 save

Save "filename"[,n]
Save all banks unless n is specified. Use extension ".ABK"

[See
Memory Banks
for more.]

1.117 bsave

Bsave file$, start To end

eg. Bsave "Test",
Start
(7) To
Start
(7)+
Length
(7)

Saves a chunk of memory.
Start
(7) to
Start
(7)+
Length
(7).

1.118 bload

Bload file$, address
or
Bload file$, bank

If BLOADing into a bank it must already exist.
[See

Memory Banks
for more.]

1.119 screen open

Screen Open n,w,h,nc,mode

Open screen number n (0-7) , with a size of w pixels wide by h pixels
high. The size of the screen can be larger then the display. nc sets
the number of colours to be used (2,4,8,16,32,64,4096). mode sets




Amos 1.3 index

46 /146

Lowres or Hires. If screen number n already exists it will be
replaced by new screen. (eg. Screen Open 3,640,200,16,Hires)

1.120 screen close

Screen Close n

Delete screen number n

1.121 auto view

Auto View On Auto View Off
When AUTO VIEW is on then any new
screen
that is opened or any changes

to the current screen will be automatically displayed. Auto View Off
prevents this.

1.122 default

Default

Closes all currently open screens and returns to the default display.

1.123 view

View
Display any changes to the current screen at the next vertical blank
period. For use when

AUTO VIEW
is OFF.

1.124 load iff

Load Iff "filename"[, s]

Load Iff picture called filename into screen number s. If s is not
specified then picture will be loaded into the current screen.




Amos 1.3 index

47 /146

1.125 save iff

Save Iff "filename" [, compression]

Save current screen to disk and call it filename. If compression is
set to 1 then standard Amiga file compression is used. If compression
is set to 0 then extra AMOS data containing screen settings such as
Screen Display, Screen Offset and Screen Hide/Show will be added to
your file. The default is 0.

1.126 screen display

Screen Display n [,x,y,w,h]

Display screen number n. The following modifiers can be added:

x,y sets the screens location in hardware coordinates. x is rounded
to the nearest 16-pixel boundary.

w,h sets the width and height of current screen in pixels. w 1is
rounded to the nearest 16-pixel boundary.

1.127 screen offset

Screen Offset n,x,y

Sets display offset of screen n by x,y pixels. x and y may be
negative.

1.128 screen clone

Screen Clone n

Clones the current screen to screen n. This cloned screen can only be
manipulated by the

SCREEN DISPLAY

and

SCREEN OFFSET

commands .

1.129 dual playfield

Dual Playfield screenl, screen?

Let screen 2 show through colour 0 of screen 1. The two screens must
be the same resolution. The palette for both screens will be taken
from screen 1. The colours for screen 2 will be taken from the half
of the colour registers that are not being used by screen 1. If
screen 1 and screen 2 both had 8 colours then screen 1 would use




Amos 1.3 index 48 /146

colour registers 0-7 and screen two would use colour registers 8-15.
Anything drawn to screen 2 will automatically have it’s colour
register converted to the appropriate number (eg. if you draw to
screen 2 with INK set to register 2, then register 9 will actually be
used.) The possible screen colour combinations are:

Screen 1 Screen 2
No of colours No of colours

4 Lowres only
8 Lowres only
Note: never set SCREEN OFFSET for both screens to 0.

QO 00 DN
=~

1.130 dual priority

Dual Priority screenl, screen2

Let screen 2 be in front of screen 1. The colour palette will still be
taken from screen 1.

1.131 screen

s=Screen

Return current screen number. Current screen may or may not be
visible.

1.132 screen to front

Screen To Front [s]

Move screen s to front of display. If s is omitted then the current
screen is move to front.
Note: if
AUTO VIEW
is OFF then the
VIEW

command must be used before
the effect can been seen.

1.133 screen to back

Screen To Back [n]

Move screen n back of display. Default is current screen.




Amos 1.3 index

49/ 146

1.134 screen hide

Screen Hide [n]

Hide screen n completely from view. Default is current screen.

1.135 screen show

Screen Show n

Show a screen that was previously hidden with Screen HIDE.

1.136 screen height

h=Screen Height [n]

Returns height of screen n. Default is current screen.

1.137 screen width

w=Screen Width [n]

Returns width of screen n. Default is current screen.

1.138 screen colour

c=Screen Colour

Returns maximum number of colours in current screen.

1.139 scin

s=Scin (x,V)

Returns screen number at hardware coordinates x,Vy.

1.140 default palette

Default Palette cl,c2,c3,... c32

Set colours in a default palette that will be applied to any
subsequent screens created. c¢ is the $RGB values for each colour
register.




Amos 1.3 index 50/ 146

1.141 (get palette

Get Palette n [,mask]

Load the colour palette from screen n to the current screen. mask is
a 32-bit binary number that selects which colours you want to copy to
the current screen. When a bit is set to 1 then the corresponding

colour is copied.
(eg. to get just the first 4 colours mask=%000001111 )

1.142 cls

Cls
Fill current screen with colour 0 and clear any windows that are open.

Cls col
Fill current screen with colour col.

CLS col,x1l,yl To x2,y2
Fill area x1,yl To x2,y2 with colour col.

1.143 screen copy

Screen Copy scrl To scr2
Screen Copy screen scrl To screen scr2

Screen Copy scrl,xl,vyl,x2,yv2 To scr2,x3,y3 [,mode]

Copy an area of screen scrl to location x3,y3 on screen scr2. Mode is
a binary number that can set as follows:

Mode Effect Bit pattern
REPLACE Copy image completely over destination %$11000000
INVERT Invert image and copy over destination %$00110000
AND Use logical AND %$10000000
OR Use logical OR %$11100000
XOR Use logical XOR %$01100000

1.144 screen base

table=Screen Base

Returns the base address of the internal table used to hold the number
and position of your AMOS screen. See EXAMPLE 20.2 for a simple
demonstration. [On your AMOS 1.2 Program disk within the Manual Folder.]




Amos 1.3 index

51/146

1.145 def scroll

Def Scroll n,x1,yl To x2,y2,dx,dy

Define scroll zone number n (1-16). x1,yl to x2,y2 defines the area
to be scrolled. dx is the number of pixels the zone will be scrolled

to the right if positive or to the left if negative. dy is the number
of pixel the zone will be scrolled down if positive or up if negative.

The scroll is performed every time the
SCROLL
command is called.

1.146 scroll

Scroll n

Scroll zone number n as defined in the
DEF SCROLL
command.

1.147 screen swap

Screen Swap [n]
Swap the physical and logical screens.

This command deals with logical and physical screens. A physical
screen is the one that is being shown at any given time and a
logical is the screen that all current drawing commands are being
sent to and is not visible. After all drawing to the logical screen
is done, it can then be swapped with the physical screen and the
process repeats.

1.148 logbase

address=Logbase (p)
Returns the address for bit-plane p of the logical screen.

This command deals with a logical screen ONLY. A physical

screen is the one that is being shown at any given time and a
logical is the screen that all current drawing commands are being
sent to and is not visible. After all drawing to the logical screen
is done, it can then be swapped with the physical screen and the
process repeats.




Amos 1.3 index

52/146

1.149 phybase

address=Phybase (p)
Returns the address for bit-plane p of the physical screen.

This command deals with a physical screen ONLY. A physical

screen is the one that is being shown at any given time and a
logical is the screen that all current drawing commands are being
sent to and is not visible. After all drawing to the logical screen
is done, it can then be swapped with the physical screen and the
process repeats.

1.150 physic

x=Physic x=Physic (s)

Returns an identification number for the current physical screen to be
used in place of a screen number in the

ZOOM

’

APPEAR

and
SCREEN COPY
commands .

This command deals with a physical screen ONLY. A physical

screen is the one that is being shown at any given time and a
logical is the screen that all current drawing commands are being
sent to and is not visible. After all drawing to the logical screen
is done, it can then be swapped with the physical screen and the
process repeats.

1.151 logic

x=Logic x=Logic (s)
Returns an identification number for the current logical screen.

This command deals with a logical screen ONLY. A physical

screen is the one that is being shown at any given time and a
logical is the screen that all current drawing commands are being
sent to and is not visible. After all drawing to the logical screen
is done, it can then be swapped with the physical screen and the
process repeats.

1.152 wait vbl




Amos 1.3 index 53 /146

Wait Vbl
Wait for the next vertical blank and then continue. Also see

MULTI WAIT

1.153 appear

Appear source To destination,effect [,pixels]

Make

screen

source appear on screen destination. effect (l-number of
pixels on screen) determines the type of fade. pixel sets the number

of pixels starting from the top of the screen that will be affected.

1.154 fade

Fade speed [,colour list]
Fade the current palette to back or to [colour list]. Speed is the
number of vertical blank periods used to complete the fade.

Fade speed To s [,mask]

Fade the current palette to the palette of screen s. If s is negative
then it represents the palette of a sprite. mask is a bit pattern
that specifies which colours should be changed.

(eg. Jjust fade the first 5 colours FADE 20 To 2,%00011111 )

1.155 flash

Flash index, " ($SRGB,delay) ($SRGB, delay) (SRGB,delay) ..."
Make colour register index cycle through each $RGB colour value

listed. delay is the time measured in 50ths of a second that each
colour will be displayed. FLASH operates as an interrupt.

Note: A WAIT command should be used after a FLASH command. It is
calculated like so: wait value = fade speed x 15.

Flash Off

Deactivate the FLASH command.

1.156 shift up

Shift Up delay, first,last, flag

Shift colours from register first to register last up one position at
a time. delay is the time measured in 50ths of a second between each




Amos 1.3 index

54/146

shift. 1If flag is 1 then the colours loop. If flag is 0 then the
contents of the first and last registers will be discarded, and the
region between will gradually be replaced by a copy of the first
colour in the list. SHIFT operates as an interrupt.

1.157 shift down

Shift Down delay, first, last, flag

Shift colours down. See
SHIFT UP

1.158 shift off

Shift Off
Deactivate the

SHIFT UP

and

SHIFT DOWN
command.

1.159 zoom

Zoom source,xl,yl,x2,y2 To dest,x3,vy3,x4,y4

Take area defined by x1,yl to x2,y2 in screen source and make it fit
into area x3,y3 to x4,y4 on screen dest.

1.160 cop logic

addr=Cop Logic
Returns the absolute address to the logical copper list in memory. This

allows you to poke your copper instructions directly into the buffer,
possibly using assembly language.

1.161 cop move

(Write a MOVE instruction into the logical copper list.)

Cop Move addr,value
Generates a MOVE instruction into the copper list.




Amos 1.3 index

55/146

addr is an address of a 16 bit register to be changed. This must lie
within the normal copper DATAZONE ($7F-$1BE).

value is a word-sized (2bytes) integer to be loaded into the requested
register.

(See

COP LOGIC
for the addr value.)

1.162 cop movel

(Write a long MOVE instruction into the copper list.)
Cop Movel addr,value
This is identical to the standard
COP MOVE
command, except that addr

now refers to a 32bit copper register.

value contains a long word (4bytes) integer.

1.163 cop reset

(Reset copper list pointer.)
Cop Reset

COP RESET restores the address used by the next copper instruction to
the start of the copper list.

1.164 cop wait

(Copper WAIT instruction)
Cop Wait x,vy[,x mask,y mask]

COP WAIT writes a WAIT instruction into your copper list. The copper
waits until the hardware coordinates x,y have been reached and returns
control to the main processor.

Note that line 255 is managed automatically by AMOS. So, you don’t have
to worry about it at all.

x mask and y mask are bitmaps which allow you to wait until just a
certain combination of bits in the screen coordinates have been set. As
a default, both masks are automatically assigned to $1FF.




Amos 1.3 index

56 /146

1.165 copper off

This freezes the current AMOS copper list and turns off the screen

display completely. You can now create your own display using a series
of
COP MOVE
and
COP WAIT
instructions.

As a default, all user-defined copper lists are limited to a maximum of
12k. On average, each copper instruction takes up 2 bytes. So, there
is space for around 6000 instructions. This may be increased if
required, using a special option from the AMOS CONFIG utility.

Note that all copper instructions are written to a separate logical list
which is not displayed on the screen. This stops your program from
corrupting the display while the copper list is being constructed. To
activate your new screen, you’ll need to swap the physical and logical
lists around with the
COP SWAP
command.

It’s also important to generate your copper lists in strict order,
starting from the top left of the screen, progressing downward to the
bottom right. See EXAMPLE 10.15 in the MANUAL folder of your AMOS1.2
PROGRAM disk.

1.166 cop swap

This will cause the logical and physical copper lists to swap
immediately. [This command is not in the manual!]

1.167 copper on

COPPER ON restarts the AMOS copper list calculations and displays the
current AMOS screens. Providing you haven’t drawn anything since the
COPPER OFF instruction, the screen will be restored to precisely it’s
original state.

1.168 spack

Spack s To n [x1,v]l,x2,y2]

Compress screen number s into bank number n. x1,vy1l,x2,y2 defines the
area to be saved. The default is the whole screen. SPACK also saves
the screen’s mode, size, offset and display position. All x
coordinates are rounded to the nearest 8 pixel boundary.




Amos 1.3 index 57 /146

1.169 pack
Pack s To n [x1,yl,x2,vy2]
Same as
SPACK
but does not save the screen’s mode, size, offset or
position.

1.170 unpack

Unpack b to s
For use with unpacking

SPACK

ed screens. Unpacks the image in bank b
to screen number s.

Unpack b [,x,v]
For use with unpacking
PACK
ed screens. Unpacks the image in bank b to
the current screen at coordinates x,y.
PACK
ed screen are really
intended to be used with
DOUBLE BUFFER
ing on.

1.171 pen

Pen index
Sets colour of text to the colour stored in register index (0-63).

=PENS (n)

as$=Pen (n)

Allows a colour change within a string.

(eg. c¢c$ = Pen$(2) + "White " + Pen$(6) + "Blue" )

1.172 paper

Paper index
Sets background colour of text to the colour in register index (0-63).

=PAPERS (n)
x$=Paper$ (n)
Allows a colour change within a string.




Amos 1.3 index 58 /146

1.173 inverse on-off

Inverse On Inverse Off

Swaps text background and foreground colours.

1.174 shade on-off

Shade On Shade Off

Reduces brightness of text.

1.175 under on-off

Under On Under Off

Turns on-off text underlining.

1.176 writing

Writing wl [,w2]

Changes text writing mode as follows:

wl=0 REPLACE New text overwrites anything underneath
wl=1l OR Merge text using logical OR

wl=2 XOR Merge text using logical XOR

wl=3 AND Merge text using logical AND

wl=4 IGNORE All printing will be ignored

w2=0 NORMAL Text is printed along with its background
w2=1 PAPER Only the text background is printed

w2=3 PEN Prints text with a background of colour 0

1.177 locate

Locate x,y Locate x, Locate ,y

Place text cursor at location x,y measured from top left of screen.

1.178 cmove

Cmove w,h

MOVE text cursor relative to current position.




Amos 1.3 index

59/146

1.179 at

x$=At (x,VY)
Allows you to place text from within a string.
(eg. x$=At(10,10)

Print
xS + "Over Here" )

1.180 x text

t=X Text (x)

Converts a normal x coordinate into a text coordinate relative to the
current window. If x lies outside this window a negative value will
be returned.

t=Y Text (y)

Converts a y coordinate form the standard screen format into a text
coordinate relative to the current window.

1.181 x graphic

g=X Graphic (x)
g=Y Graphic (y)

Converts a relative window coordinate into a screen coordinate.

1.182 home

Home

Move text cursor to 0,0

1.183 cdown

Cdown

Moves cursor down one line.

1.184 cdown$

x$=Cdown$

Allows a cursor down movement within a string.




Amos 1.3 index

60/146

1.185 cup

Cup

Move text cursor up one line.

1.186 cup$

x$=Cup$

Allows a cursor up movement within a string.

1.187 cleft

Cleft

Move text cursor left one space.

1.188 cleft$

x$=Clefts$

Allows a cursor left movement within a string.

1.189 cright

Cright

Move text cursor right one space.

1.190 cright$

x$=Cright$

Allows a cursor right movement within a string.

1.191 xcurs

x=X Curs
y=X Curs

Returns x or y [respective] coordinate of text cursor.




Amos 1.3 index 61/146

1.192 set curs

Set Curs L1,L2,L3,L4,L5,L6,L7,L8

Changes shape of cursor. Each parameter is an eight-bit binary number
representing a line of the cursor starting from the top.

1.193 curs on-off

Curs On Curs Off

Turn the current screen’s cursor ON or OFF.

1.194 memorize

Memorize X Memorize Y
Saves current cursor position in memory.
[Also see

REMEMBER
-]

1.195 remember

Remember X Remember Y
Recalls previous

MEMORIZE
d cursor position.

1.196 cline

Cline [n]

Clear current line of text. If n is stated then text is erased from
current position to n number of characters.

1.197 curs pen

Curs Pen n

Change cursor colour.




Amos 1.3 index 62/ 146

1.198 centre

Centre a$

Prints a$ centered on current line.

1.199 set tab

Set Tab n

Sets tab distance to n spaces.

1.200 tab$

x$=Tab$

Returns tab control character.

1.201 repeat$

x$=Repeat$ (a$, n)

Creates a repeat ESC string for a$ n times and stores result in x$.

1.202 inkey$

k$S=Inkey$

Returns whichever ASCII key is pressed on the keyboard. INKEYS$ does
not wait for a key to be pressed.

1.203 scancode

s=Scancode
Returns the scancode for the key that was entered using the last

INKEYS
function.




Amos 1.3 index 63 /146

1.204 key state

t=Key State(s)
Returns a value of -1
TRUE
) 1f key number s has been pressed. s is a

keyboard
scancode

1.205 key shift

k=Key Shift

Returns a bit pattern representing which control keys have been

pressed.

Bit Key
0 Left Shift
1 Right Shift
2 Caps Lock (on of off)
3 Ctrl
4 Left Alt
5 Right Alt
6 Left Amiga
7 Right Amiga (or Commodore key)

1.206 set input

Set Input cl,c2

This sets the End-Of-Line characters which will be used to terminate all
input statements. Normally cl holds 10 and c2 holds -1.

cl and c2 hold ascii values which will be used as input terminators. If
you want to use a single character, set c2 to -1.

1.207 input$(n)

x$=Input$ (n)

Returns n number of characters from the keyboard. This command does
not echo these characters to the screen.

1.208 wait key




Amos 1.3 index 64 /146

Wait Key

Wait for a key to be pressed and then continue.

1.209 key speed

Key Speed lag, speed
Set the speed of the key repeats. Both lag and speed are measured in
50ths of a second. 1lag is the amount of time between the key press

and the first repeat. speed is the amount of time between each
successive repeat.

1.210 clear key

Clear Key

Clears the keyboard buffer.

1.211 put key

Put Key a$

Load a string into the keyboard buffer. Often used for setting
defaults for INPUTs.

1.212 input

Input [a$]; [varl,var2,...]1;

a$ 1s the optional text to be displayed as a prompt.

1.213 line input

Line Input [a$]; [varl,var2,...];
Inputs a number of variables separated by the user by pressing return.

a$ is the optional text to be displayed as a prompt.




Amos 1.3 index 65/ 146

1.214 print

Print variable list
Print displays the variable list to the current window or screen.

NOTE: all variables must separate themselves with semi colons [;].
Example: Print "Your name is";realname$

1.215 print using

Print Using format$;variable list
Here is a list of the possible formatting controls:

~ Print a single character from a string.

Print a single digit from a variable. TIf no digit then space.
Add a plus sign if positive or a minus sign if negative.

Add a minus sign if negative.

Place decimal point.

;  Centre a number but don’t print a decimal point.

~ Print a number in exponential form.

+

1.216 zone$

x$=Zone$ (a$, n)

Creates zone number n around a$ and stores in x$. When x$ is printed
it will automatically activate it’s zone.

1.217 border$

x$=Border (a$, n)

Creates border number n around a$ and stores in x$. When x$ is
printed it will automatically have a boarder.

1.218 hscroll

Hscroll n

Scroll text in current window horizontally by one character. n can be
one of four values:

1 = Move current line to the left
= Scroll screen to the left
3 = Move current line to the right

N
|




Amos 1.3 index 66 /146

4 = Scroll screen to the right

Blank lines are left where gaps are created.

1.219 vscroll

Vscroll n

Same as
HSCROLL
except this scroll is vertical and the options are
different. n can be one of the following:
1 = Any text at the cursor line and below are scrolled down.
2 = Text at the cursor line and below (if any) are scrolled up.
3 = Only text from the top of the screen to the cursor line is scrolled
up.
4 = Text from top of the screen to the current cursor position is

scrolled down.

Blank lines are left where gaps are created.

1.220 text

Text x,y,t$

Prints graphic text in t$ at x,y. All coordinates are measured
relative to the characters baseline which can be determined by the

TEXT BASE
command.

1.221 get fonts

Get Fonts

Makes an internal list of available fonts from the current start-up
disk. This list can be examined using the
FONTS
function. Get FONTS
must be called before
SET FONT

1.222 get disc fonts




Amos 1.3 index 67 /146

Get Disk Fonts

Search for fonts in the font folder.

1.223 get rom fonts

Get Rom Fonts

Searches for ROM fonts.

1.224 font$

a$=Font$ (n)

Returns a string of 38 characters describing font number n. If font
does not exist then a null string will be returned, otherwise the
string will be in the following format:

Character Description
1-29 Font name
30-33 Font height
34-37 Identifier (disk or ROM)

1.225 set font

Set Font n

Change current font to font number n

1.226 set text

Set Text style

Selects font style. style is a bit pattern:
Bit Effect

0 Underline
Bold
2 Italic

[

1.227 text styles




Amos 1.3 index

68 /146

s=Text Styles

Returns current text style in bit pattern style as in
SET TEXT

1.228 text length

w=Text Length (t$)

Returns the width of t$ in pixels using the current font.

1.229 text base

b=Text Base

Returns the position of the current font’s base line in pixels.

1.230 wind open

Wind Open n,x,y,w,h [,border [,set]]

Open window number n at graphic coordinates x,y. x 1is rounded to the
nearest multiple of 16. w,h specify the size of the window in
characters. w and h must be divisible by 2. Dborder selects one of 16
border styles. Any borders added to a window will be outside the
defined text area. set selects the character set number defined by
the

SET FONT

command.

1.231 wind save

Wind Save

This feature saves the display under the window created and is
replaced when the window is moved or closed.

1.232 border

Border n,paper,pen

Set the border of the current window. n is the border style (1-16).
paper and pen select the foreground and background colours of the
border.




Amos 1.3 index 69 /146

1.233 title top

Title Top t$

Display t$ in the top border of current window. Only bordered windows
can be titled this way.

1.234 title bottom

Title Bottom b$

Display b$ in the bottom border of current window. Only bordered windows
can be titled this way.

1.235 window

Window n

Activates window number n.

1.236 =windon

w=Windon

Returns current window number.

1.237 wind close

Wind Close

Close current window.

1.238 wind move

Wind Move x,Vy

Move current window to graphic coordinates x,y. x will be rounded to
the nearest 16-pixel boundary.




Amos 1.3 index

70/146

1.239 wind size

Wind Size sx,sy

Changes window size to sx,sy measured in characters. After a window’s
size has been changed the text cursor returns to 0,0.

1.240 clw

Clw

Clear current window and fill with present PAPER colour.

1.241 hslider

Hslider x1,yl To x2,y2,total,pos,size
Draw a horizontal slider in area x1,yl To x2,y2. total is the number
of units the slider will be divided into. pos sets the position of

the slider from the start of the slider in units defined by total.
size sets the size of the slider box in units defined by total.

1.242 vslider

Vslider x1,yl To x2,y2,total,pos,size

Similar to
HSLIDER

1.243 set slider

Set Slider bl,b2,b3,pb,sl,s2,s3,ps

Set colours and patterns for slider boxes. Dbl,b2,b3 set the ink,paper
and outline colours for the background of the box. pb chooses the
fill pattern to be used for these regions. sl,s2,s3 set the colours
for the slider box and ps selects the pattern it is to be filled with.
bp and ps can be any fill patterns you wish (0-24).

1.244 ink




Amos 1.3 index

71/146

Ink col[,paper] [,border]
Selects colours for all subsequent drawing operations. col is the
register number (0-63), paper is the colour for the background fill
patterns generated by the
SET PATTERN
command, border is the colour
for outlines added to bars and polygons. The border is toggled by the
SET PAINT

command. Include commas for excluded parameters.
(eg. INK ,,10)

1.245 colour

Colour index, SRGB

Loads colour register index (0-31) with SRGB. S$RGB represents the
red, green and blue intensity of the colour stored in register index.

1.246 =colour

c=Colour (index)

Return colour stored in register index.

1.247 palette

Palette reg0,regl,reg2,... reg3l

Load all colour registers with new colours. Any register not to be
changed can be skipped by leaving in the corresponding comma.

1.248 gr locate

Gr Locate x,y
Set position of the graphics cursor in screen coordinates. Any

drawing commands with the starting coordinates omitted will default to
the current graphic cursor position.

1.249 xgr
x=Xgr y=Ygr

Returns the current graphics cursor location.




Amos 1.3 index 72 /146

1.250 plot

Plot x,vy [,c]
Draws one pixel at coordinates x,y using colour c. If c is included

in this statement then all following drawing commands will use this
colour; otherwise the pixel will be drawn with the current colour.

1.251 point

c=Point (x,V)

Returns the colour register at point x,y

1.252 draw

Draw [x1l,yl] To x2,y2

Draws a line from x1,yl to x2,y2. x1 and yl default to the graphics
cursor.

1.253 box

Box x1,yl To x2,y2

Draws a box from x1,yl to x2,v2.

1.254 polyline

Polyline x1,yl To x2,y2 To x3,vy3
POLYLINE is simular to
DRAW

except it draws several lines at once. It’s
capable of drawing complex hollow polygons with one statement.

1.255 circle

Circle x,vy,r

Draw a circle at point x,y with a radius of r.




Amos 1.3 index

73/146

1.256 ellipse

Ellipse x,y,rl,r2

Draw an ellipse at point x,y rl wide and r2 high.

1.257 set line

Set Line mask
mask is a 16-bit binary number that describes how lines made by the

DRAW

4

BOX
and
POLYLINE
commands will look. (eg. for a dotted line,
SET LINE %0101010101010101) This command does not affect CIRCLE or
ELLIPSE.

1.258 paint

Paint x,y,mode

Fills an enclosed area starting at point x,y with the current fill
pattern made with the

SET PATTERN

command. If mode is 0, filling will
stop at the current border colour. mode 1 will stop filling at any
colour different from the current

INK

colour.

1.259 bar

Bar x1,yl To x2,y2

Draws a filled rectangle.

1.260 polygon

Polygon x1,yl To x2,y2 To x3,y3

Draw a filled polygon. The last x and y coordinates should be the
same as the first.




Amos 1.3 index 74 /146

[Also see
POLYLINE

-]

1.261 set pattern

Set Pattern pattern

Sets fill pattern. Default 0 is a solid in the current

INK

colour.
If pattern > 0 then one of 34 built-in fill styles is used. The first
three of which are used for the mouse. If pattern < 0 the absolute

value of pattern will relate to the sprite number in bank one. Fill
sprites will be truncated as follows: the width will be clipped to 16
pixels wide, the height will be rounded to the nearest power of 2.
Two-coloured images will be drawn in the current

INK

colour.
Multi-coloured images’ foreground colour will be merged with the
current ink colour using a logical AND; the paper colour of your

pattern is ORed with the image background colour. If you want to use
your images original colour then set your colours to
INK

31,0. Don’'t
forget to load your images pallet with the
GET SPRITE PALETTE
command.

1.262 set paint

Set Paint n

If n = 1 then outline mode is activated. All
POLYGON
and
BAR
instructions will be outlined in the boarder colour set with the
INK
command. If n = 0 then outline mode is turned off.

1.263 gr writing

Gr Writing bitpattern

All graphics will be drawn in the style determined by the bitpattern.
The possibilities are:

JAM1 Bit 0=0
Only draws the part of your image that are set to the current ink




Amos 1.3 index 75/146

colour. Any parts drawn in the paper colour are ignored. This
is ideal for merging text over an existing background.

JAM2 Bit 0=1

This is the default. Any existing graphics will be replaced by
the new image (foreground and background) .

XOR Bit 1=1

Changes the colour of the areas of a drawing which overlap an
existing picture. You can erase an image by XORing it in the
same position.

INVERSEVID Bit 2=1

Reverse image before it is drawn. Swaps foreground and
background colours of image.

Note: This command does not affect the PRINT and CENTRE commands
which are set by the WRITING command.

It is possible to combine one or more of these styles.
(eg. GR WRITING %101 use JAM2 and inversevid)

1.264 clip

Clip [x1,vyl To x2,y2]
Limits all drawing operations to a region of the screen specified by

by x1,yl TO x2,y2. It is acceptable to use coordinates outside of the
normal screen boundaries.

1.265 sprites

Important info:

Four—-colour sprites use the colours stored in registers 16 to 31

like so:
Sprite Number Colour Registers
0/1 17/18/19
2/3 21/22/23
4/5 25/26/27
6/7 29/30/31

If your are using 32 or 64 colours on a screen then the sprites
will share the above color registers. This does not apply to
fifteen-colour sprites.

Note: If computed sprites are in use then make sure each sprite uses
the same colours.

1.266 sprite




Amos 1.3 index 76/ 146

Sprite n,x,y,1

Display sprite number n (0-63) at hardware coordinates x,y using image
number i. n values that are grater then 7 relate to computed sprites.

1.267 (get sprite palette

Get Sprite Palette [mask]

Loads sprite palette into current palette. mask is a bit-pattern used
to select certain colours.

1.268 set sprite buffer

Set Sprite Buffer n

Eliminate any redundant memory used by the sprite buffer. n (16-256)
should be set to the number of pixels in your longest sprite.

1.269 sprite off

Sprite Off [n]

Turn off all sprites or just sprite number n.

1.270 sprite update

Sprite Update Off
Turn off automatic sprite updating.

Sprite Update
Update any sprites that have been moved. For use when Sprite Update

is OFF.

Sprite Update On
Turn automatic sprite updating back on.

1.271 Xx sprite

x=X Sprite(n)
y=Y Sprite (n)

Returns current x or y [repsective] hardware coordinate of sprite n.




Amos 1.3 index 77 /146

1.272 (get sprite

Get Sprite [s,] 1i,x1,yl To x2,y2

Grab area x1,yl TO x2,y2 form screen s (default is current screen) and
store in sprite bank as image 1i.

1.273 del sprite

Del Sprite s [TO f]
Delete

sprites

/

bob
s from bank.

1.274 X screen

x=X Screen([s,] xcoord)
y=Y Screen([s,] ycoord)

Translate a hardware coordinate into a screen coordinate relative to
the current screen or screen s.

1.275 xhard

x=X Hard([s,] xcoord)
y=Y Hard([s,] Xcoord)

Translate a screen coordinate into a hardware coordinate.

1.276 i sprite

image=I Sprite (n)

Returns the current image number for sprite number n. 0 will be
returned if the sprite is not displayed.

1.277 sprite base




Amos 1.3 index 78 /146

table=Sprite Base (n)

Provides the address of the internal data list for sprite n. If sprite
n does not exist, then the address of table will be 0.

Negative values for n return the address of the optional MASK associated
with your sprite. table will now contain one of three possible values
depending on the status of this mask:

table<0 Indicates that there is no mask for this sprite.
table=0 Sprite n does have a mask, but the system has yet to generate
it.

table>1 This is the address of the MASK in memory. The first Long
Word [see LEEK] of this area holds the lenght of the mask
and the following locations is the actual mask defination.

See EXAMPLE 20.3 for a simple demonstration. [On your AMOS 1.2 Program
disk within the Manual Folder.]

1.278 bob

Bob n,x,vy,1

Place BOB number n at screen coordinates x,y using image number i. n
is normally limited to 63 at the most but this value can be changed
with the AMOS setup program.

1.279 double buffer

Double Buffer

Create a logical screen for the current physical screen.

1.280 set bob

Set Bob n,back,planes,minterms

Set drawing parameters for
BOB
number n. If back = 0 then the
BOB
can
be moved around without corrupting the background. If back > 0 then
then area beneath the
BOB
will be replaced by colour back-1. This is
useful if a




Amos 1.3 index

79/146

BOB
is moving on a solid coloured background.
then the redrawing process is turned off and its up to the
replace and backgrounds destroyed by the
BOB
planes is a binary mask
representing which bit-planes the

BOB

will be drawn on. minterm is
the blitter mode used to draw the

BOB

Normal settings are %11100010
if the
BOB

If back < 0
user to

is used with a mask or %11001010 if no mask has been set.
Note: it is a good idea to use the SET BOB command before turning a

BOB on.

1.281 no mask

No Mask [n]

Turn of masks for all
BOB
s or just
BOB
number n.

1.282 autoback

Autoback n

Coordinate drawing functions with
BOB
s. n sets the AUTOBACK mode. If

n = 0 then AUTOBACK is turned off. All drawing commands are sent to
the logical screen only. If n = 1 then graphical operations are sent
to the physical and logical screens at the same time. No account is

taken of the

BOB
on the screen. It is best to keep graphical
operations away from
BOB
when in this mode. If n = 2 then graphical

operations are now synced with the
BOB
updates and will appear behind

them. However, in this mode, graphical operations will take twice as

long to complete.




Amos 1.3 index 80/ 146

1.283 bob update

Bob Update On
Turn on the automatic
BOB
update function.
BOB
s will be drawn every
50th of a second.

Bob Update Off
Turn off the automatic
BOB
update function. This allows all
BOB
s to
be placed before they are drawn. To draw
BOB
s use Bob Update (below).

Bob Update
Draws all
BOB
s. Note: Bob UPDATE draws all
BOB
s to the logical
screen. In order to see them a

SCREEN SWAP
command must be called.

1.284 bob clear

Bob Clear

Clear all BOBs from the screen and redraw the background regions
underneath. This is intended for use with
BOB DRAW
to provide an
alternative to the standard
BOB UPDATE
command.

1.285 bob draw

Bob Draw

Draw all
BOB
S.
BOB CLEAR
and BOB DRAW give finer control over
BOB




Amos 1.3 index 81/146

updates then the
BOB UPDATE
command.

1.286 Xx bob

x1 =X Bob (n)
yl =Y Bob(n)

Returns the x or y [respective] screen coordinate of
BOB
number n.

1.287 ibob

im=I Bob (n)

Returns the current image number used by
BOB
number n. The value will
be 0 if
BOB
number n is not displayed.

1.288 limit bob

Limit Bob [n,] x1,yl To x2,y2

Limit the visibility of all

BOB

s or just

BOB

number n to an area
defined by x1,yl to x2,y2 in screen coordinates. x will be rounded to
the nearest 16 pixel boundary. This area must be greater then the
width of your

BOB

S or an error message will be returned.

1.289 get bob

Get Bob [s,] i,x1,yl To x2,y2
Grab an an image in area x1,yl to x2,y2 on screen s and store it as

BOB
image number 1.




Amos 1.3 index 82 /146

1.290 put bob

Put Bob n
Draw
BOB
number n to the screen at its current location for good.
Background image is not preserved. Note: Its a good idea to use a
WAIT VBL

after this command.

1.291 paste bob

Paste Bob x,vy,1

Draw image number i to the current screen at screen coordinates x,y.
A
WAIT VBL
command is not needed after this command.

1.292 bob off

Bob Off [n]
Turn off all

BOB

s or just

BOB

number n.

1.293 hide
Hide [On]
Hide the mouse pointer. A record of the number of times this function
has been used is kept and it takes an equal number of
SHOW
commands

before the mouse is visible again. HIDE On will hide the pointer
regardless of how many times the
SHOW
command has been called. Even
though the pointer is invisible, its location can still be read with
the
X MOUSE
and Y MOUSE functions.




Amos 1.3 index

83/146

1.294 show

Show [On]

Show the mouse pointer. A record of the number of times this function
has been used is kept and it takes an equal number of
HIDE
commands
before the pointer will be hidden. SHOW On will show the pointer
regardless of how many times the
HIDE
command has been called.

1.295 change mouse

Change Mouse m

Change the pointer image number m. If m = 1 then pointer is an arrow.
If m = 2 then pointer is a crosshair. If m = 3 then pointer is a
clock. If m > 3 then pointer will be image number m-3. The mouse

image can not be wider then 16 pixels and contain no more then four
colours.

1.296 mouse key

k=Mouse Key

Returns a bit pattern representing which key(s) of the mouse have been
pressed. Bits 0-2 represent mouse buttons 1-3.

1.297 mouse click

c=Mouse Click

Returns a bit pattern representing which key(s) of the mouse have been
clicked. The register is set back to zero after it has been checked
so it will only detect one key press at a time.

1.298 Xx mouse

x1=X Mouse X Mouse=x1
Returns current x hardware coordinate of the mouse pointer, or assigns
pointer to coordinate x1.

y1l=Y Mouse Y Mouse=yl
Returns current y hardware coordinate of the mouse pointer, or assigns
pointer to coordinate yl.




Amos 1.3 index 84 /146

1.299 limit mouse

Limit Mouse x1,yl To x2,y2

Restrict mouse movement to area x1,yl to x2,y2.

1.300 joy

d=Joy (3)

Returns a bit pattern that represents the direction of joystick j
(0-1). The pattern is as follows:

Bit Number Direction
0 up
1 down
2 left
3 right
4 fire button

1.301 jleft

x=Jleft (§)

Returns a value of -1 (

TRUE

) 1f joystick number j is moved to the left,
otherwise 0 (

FALSE

) 1s returned.

1.302 jright

x=Jright (j)

Returns a value of -1 (

TRUE

) 1f joystick number j is moved to the
right, otherwise O0(

FALSE

) 1is returned.

1.303 jup




Amos 1.3 index 85/146

x=Jup (J)

Returns a value of -1(

TRUE

) 1f joystick number j is moved up,
otherwise 0 (

FALSE

) 1is returned.

1.304 jdown

x=Jdown (7)

Returns a value of -1(

TRUE

) if joystick number j is moved down,
otherwise O0(

FALSE

) 1s returned.

1.305 fire

x=Fire (j)

Returns a value of -1 (

TRUE

) if fire button on joystick j is down,
otherwize O (

FALSE

) is returned.

1.306 sprite col

c=Sprite Col(n [,s To e])

Returns -1 (

TRUE

) 1f sprite number n has collided with any other
sprites or Jjust a range of sprites from s to e.
Note: the

MAKE MASK

command must be called before this function can be
used.

1.307 bob col




Amos 1.3 index 86/ 146

c=Bob Col(n [,s To e])

Returns -1 (
TRUE
) 1if
BOB
number n has collided with any other
BOB
or
just a range of
BOB
s from s to e.

1.308 spritebob col

c=Spritebob Col(n [,s To e])

Returns -1 (
TRUE
) if sprite number n has collided with any
BOB
s or just
a range of
BOB
s form s to e.

Note: this function only works in low res.

1.309 bobsprite col

c=Bobsprite Col(n [,s To e])

Returns -1 (

TRUE

) if

BOB

number n has collided with any sprites or Jjust
a range of sprites form s to e.

Note: this function only works in low res.

1.310 col

c=Col (n)

COL is an array containing the collision detection data. Each element
relates to a sprite or
BOB
The first element will be set to -1 if a




Amos 1.3 index 87 /146

collision has been detected with sprite or
BOB
number 1 and so on
through the array.

Also see
Author Note on =COL (Bob)

1.311 hot spot

Hot Spot i,x,y
Sets the hot spot for image number i to x,y measured in pixel from the

top left corner of the image. A hot spot is the "handle" by which a
image is positioned.

1.312 make mask

Make Mask [n]

Make a mask for all images in the
SPRITE
/
BOB
bank or just image n.
Masks are used for collision detection.

1.313 reserve zone

Reserve Zone [n]
Reserve memory for n number of
zone

s. If n is not provided then all
zones are removed from memory.

1.314 set zone

Set Zone z,x1,yl To x2,y2
Create zone area number n at screen coordinates x1,yl to x2,y2. The

RESERVE ZONE
command must be called before any zones are set.




Amos 1.3 index 88 /146

1.315 zone

t=Zone([s,] x,y)

Returns the zone number at screen coordinates x,y on screen s. This
only detects the first zone at these coordinates.

1.316 hzone

t=Hzone ([s,] x,Vy)

Returns the zone number at hardware coordinates x,y on screen s.

1.317 mouse zone

x=Mouse Zone

Returns the zone number at the current mouse position.

1.318 reset zone

Reset Zone [z]

Deactivate all zones or just zone number z. This does not fee any
memory used by the
RESERVE ZONE
command.

1.319 priority on-off

Priority On Priority Off

Normally

BOB

s are drawn in the order they are numbered. When Priority
in ON then the

BOB

s with the greater y coordinates are given priority.
This means that the

BOB

lower on the screen have priority over the

BOB
s higher on the screen. PRIORITY OFF set
BOB
priority calculation
back to normal.




Amos 1.3 index

89/146

1.320 update

Update Update On Update Off

Same as
SPRITE UPDATE
and
BOB UPDATE
except this command controls both

sprite
s and

BOB
s at the same time.

1.321 paste icon

Paste Icon x,y,n

Draw icon number n at graphic coordinates x,y.

Note: if
DOUBLE BUFFER
is on then icons will be drawn to both the
physical and logical screens. To speed this up, turn
AUTOBACK
to O
before drawing icons. This way they are only drawn to the logical
screen.

1.322 geticon

Get Icon [s,] i,x1,yl To x2,y2

Grab icon number i from area x1,yl to x2,y2 form screen s.

1.323 get icon palette

Get Icon Palette

Use icon palette.

1.324 del icon

Del Icon n [TO m]

Delete icon n to m.




Amos 1.3 index

90/ 146

1.325 make icon mask

Make Icon Mask [n]

Make a mask for all icons or Jjust icon number n.

1.326 icon base

table=Icon Base (n)
Returns the address for icon n. The format for this information is
exactly the same as the

SPRITE BASE
command.

1.327 get block

Get Block n,x,y,w,h [,mask]

Grab block number n from location x,y to width w and height h. If
mask is set to 1 then a mask will be made for the block.

1.328 put block

Put Block n [,x,y]

Draw block number n at its original coordinates or at x,y. x and y
are rounded to the nearest 16-pixel boundary.

Put Block n,x,y,planes [,minterms]

Draw block number n at x,y. planes is a bit pattern dictating which
planes the block is drawn on. minterms selects the blitter mode.

1.329 del block

Del Block [n]

Delete all blocks from memory or just block number n.

1.330 get cblock

Get Cblock n,x,y,w,h

Grab compressed block number n from location x,y to width w and height
h. x will be rounded to the nearest multiple of eight.




Amos 1.3 index 91 /146

1.331 put cblock

Put Cblock n [,x,V]

Draw compressed block number n at its original coordinates or at x,vy.
x will be rounded to the nearest multiple of eight.

1.332 del cblock

Del Cblock [n]

Delete all compressed blocks or Jjust number n.

1.333 boom

Boom

Make a boom sound.

1.334 shoot

Shoot

Make a gun shot sound.

1.335 bell

Bell

Make a bell sound.

1.336 volume

Volume [v,] intensity

Change volume of all sound channels or just channel number v.
intensity can be set from 0(off) to 63 (full volume) .

1.337 sam play

Sam Play s Sam Plap v, s Sam Play v,s, f

Play sample number s with voice v at a frequency of f. v is a bit
pattern representing the 4 voice channels.




Amos 1.3 index

92/146

1.338 sam bank

Sam Bank n

Select a new memory bank to be used for samples.

1.339 sam raw

Sam Raw v,addr,len, freq
Play a raw sound sample from anywhere in memory using voice V.

Starting at address addr, play len number of samples at a frequency of
freq.

1.340 sam loop

Sam Loop On Sam Loop Off

All subsequent samples are to be continuously looped.

1.341 play

Play [voice,] pitch,delay

Plays the single note pitch for a length of delay. The optional voice
is a bit pattern which allows you to select one or more voices.

For full details, it’s recommended that you read page 240-241 in your
manual for the listing of the notes and voice settings.

1.342 set wave

Set Wave wave, shape$
This provides you with the ability to design your own instruments. The

WAVE
command then allows you to use the wave with a voice.

In most musical programs [Sonix, DMCS, etc], you have the ability to use
a WAVEform, so you now do with AMOS. As usual, these waveforms are a
list of values from 0 to 255 and of a length of 256 values.

For more information, it is suggested to read pages 241-243 of your
manual to see what a WAVEform is.




Amos 1.3 index 93/146

1.343 wave

Wave w To v
This instructs the voice(s) v that it is to use the WAVEform w while
playing notes with the

PLAY

command. v contains the standard bitmap
format for selecting voices.

1.344 noise

Noise To v
This instructs the voice(s) v that it is to use the Amos WHITE NOISE

WAVEform for the selected voice(s) v. v contains the standard bitmap
format for selecting voices.

1.345 del wave

Del Wave n
This deletes user created WAVEforms that were created using the
SET WAVE

command. All voices using deleted WAVEform will be reset to the
standard SINE WAVEform (default).

1.346 sample

Sample n To v
This allows a digitized WAVEform to be used as a WAVEform for v. The
sample is a standard sample that the

SAM PLAY

would play.

For more details, see page 245 of your manual.

1.347 set envel

Set Envel wave,phase To duration,volume

wave 1s the WAVEform that you wish to change the Envelope of. This also
immediately will change any voice playing this WAVEform to the current
settings.

It is recommended to read the information in the manual on page 245-246
for further information on Attack, Decay, Sustain and Release.




Amos 1.3 index 94 /146

1.348 say

Say t$ [,mode]

SAY will cause your amiga to speak t$ to you.

mode can be one of two modes:

0 (default) means AMOS must wait for the SAY command to finish speaking.

1 allows AMOS to continue while the SAY command speaks, but this slows
down AMOS, so use as you see fit.

1.349 set talk

Set Talk sex,mode,pitch, rate

The following is the format for:

sex is: 0 for male [default], 1 is for female

mode is: a rythmic effect added to the speech.
0 (default) is off

1 turns on the rythmic effect.

pitch is: changes the pitch of the voice from 65 (low) to
320 (incredibly high)

rate is: amount of words/minute ranging from 40 to 400.
Any of the above can be omitted, as long as commas are left as required.

Example: Set Talk ,,,65

1.350 music

Music n
Play music number n. Only one piece of music can be played at a time,
but up to four can be active and waiting on a stack. All music files

must first be translated to AMOS format using one of the conversion
programs.

1.351 music stop

Music Stop

Stop playing the current piece of music.




Amos 1.3 index 95/146

1.352 music off

Music Off

Turn off all music. If restarted, the music will play from the
beginning.

1.353 tempo

Tempo s

Set tempo for music to s (1-100).

1.354 mvolume

Mvolume n

Change the music volume to n (0-63).

1.355 voice

Voice mask

Set which voices are to be used by the music. mask is a bit pattern
representing the four voice channels.

1.356 vumeter

s=Vumeter (v)

Returns the volume of the current note being played. The value
returned can range form 0 to 63.

1.357 led

Led On Led Off

Turn the audio filter on or off. This also controls the power light
on the Amiga.




Amos 1.3 index

96 /146

1.358 menu$

Menu$ (n)=titles$

Set menu titles that will appear in the menu bar. Leave a space at
the end of each title to space them out.

(eg. Menu$(l)="First menu " : Menus$ (2)="Second menu " )

Menu$ (t, o)

Menu$ (t,0)=normal$ [,selected$][,inactive$] [,backgrounds$]

Set option number o under title number t to normal$.

(eg. Menu$ (1,1)="First option" : Menu$ (l,2)="Second option" )
selected$ sets what the option will look like when it is selected.

The default is inverse text. 1nactive$ sets what the option will look
like when it is inactive. The default is italic text. Dbackground$
sets the background for the menu. background sets any back ground
that can be drawn with embedded drawing commands explained later.

1.359 menuon

Menu On
Activate menu defined in the Menu$ commands.

Menu On [bank]
Activates a menu that has been defined. If bank number is included
then the menu in the appropriate memory bank will be used.

1.360 choice

select=Choice
Returns a value of -1(

TRUE

) 1f something has been selected from the
menu. CHOICE is set to 0(

FALSE

) after every check.

item=Choice (c)
Returns the option number that was selected at level number c.

1.361 on menu proc

On Menu Proc procl [,proc2][,proc3]...

Executes the procedure in the list that corresponds with menu title
that has been selected. (eg. 1f the 3rd menu item was selected then
the 3rd procedure in the list will be executed.) This is an interrupt
command and is checked every 50th of a second.




Amos 1.3 index

97 /146

1.362 on menu gosub

On Menu Gosub labell [,label2][,label3]...

Similar to
On Menu Proc

1.363 on menu goto

On Menu Goto labell [,label2][,label3]...

Similar to
On Menu Proc

1.364 on menu on-off

On Menu On

Activate the automatic menuing system created by the On Menu
Proc/Gosub/Goto commands. Every time an On Menu Proc/Gosub/Goto
function is called, the automatic system is turned off. It must be
turned back on with an On Menu On command before the end of a
procedure or subroutine if you want it to stay on.

On Menu Off

On Menu Off turns off the automatic menuing system. Its a good idea

to do this before disk access.

1.365 on menu del

Clear the current automatic menuing system so that another can be
defined. A On Menu Off command must be used before this one.

1.366 menu key

Menu Key(,,) To c$
Create a keyboard short cut to a menu selection. c¢$ is a single
character.
Menu Key(,,) To scan [,shift]
Create a keyboard short cut to non ASCII keys. scan is a keyboard
scancode:

Scancode Keys

80-89 Function keys F1-F10

95 Help




Amos 1.3 index

98/146

69 Esc
shift is an optional bitmap that checks for control keys:

Bit Key
0 Left Shift Key
1 Right Shift Key
2 Caps Lock (On or Off)
3 Ctrl
4 Left Alt
5 Right Alt
6 Left Amiga
7 Right Amiga (or Commodore key)

1.367 menu off

Menu Off

Turn off the menu bar.

1.368 menu del

Menu Del [(,,)]

Delete all menus or just those listed.

1.369 menu to bank

Menu To Bank n

Save current menu tree to bank number n. Bank number n must not
already exist. When a menu tree has been saved to a bank, it will
automatically be saved and loaded along with the main program. This

means that the original program lines defining the menu can be
deleted, saving memory.

1.370 bank to menu

Bank To Menu n
Load a menu tree saved in bank n. To activate the new menu, use the

Menu On
command.




Amos 1.3 index 99 /146

1.371 menu calc

Menu Calc

Rearranging a large menu can take some time. Wait for an appropriate
time, then turn off the menu with
MENU OFF

, rearrange the menu, use
MENU CALC, and then turn the menu back on with
MENU ON

1.372 menu inactive

Menu Inactive level Menu Inactived(,,)

Set an entire level of the menu to inactive or an individual option by
addressing its position in the menu tree.

1.373 menu active

Menu Active level Menu Actived(,,)

Activate an entire menu level or an individual option by addressing
its position in the menu tree.

1.374 menu line

Menu Line level Menu Line(,,)

Display menu as a horizontal line.

1.375 menu tline

Menu Tline level Menu Tline(,,)

Display menu as a horizontal line that goes right across the screen.

1.376 menu bar

Menu Bar level Menu Bar(,,)

Display menu as a vertical bar.




Amos 1.3 index 100/ 146

1.377 menu movable

Menu Movable level Menu Movable(,,)

Allow menus to be moved by the user.

1.378 menu static

Menu Static level Menu Static(,,)

Stop user from rearranging the menus.

1.379 menu separate

Menu Separate level Menu Separate(,,)

Allow each item in a menu to be treated as a separate element.

1.380 menu link

Menu Link level Menu Link (,,)
Reverse the

MENU SEPARATE
command .

1.381 menu base

Menu Base x,y

Set the starting point of the first level of menus to x,vy.

1.382 set menu

Set Menu (,,) To x,vy

Place the top left corner of a menu to x,y measured relative to the
previous level.




Amos 1.3 index

101/146

1.383 menu mouse

Menu Mouse On Menu Mouse Off

Display menus at the current mouse pointer location. The position of
the menus can be offsetted by the menu base command.

1.384 menu called

Menu Called(,,)

This automatically redraws the selected menu item 50 times a second
whenever it is displayed on the screen. It’s usually used in junction
with a menu procedure to generate animated menu items which change

infront of your eyes.

See EXAMPLE 16.11 in the MANUAL folder of your AMOS1.2 PROGRAM disk.

1.385 menu item movable

Menu Item Movable level
Menu Item Movable(,,)

This command is simular to the
MENU MOVABLE
command except that it
allows you to re—arrange the various options in a particular level. So,
all the items in a menu bar may be individually repositioned by the

user. See your manual page 230 for detailed information on this
command.

1.386 menu item static

Menu Item Static level
Menu Item Static(,,)

This command locks one or more menu items firmly into place and is the
default setting.

1.387 menu once

Menu Once(,,)
Turns off the automatic updating system started using the command

MENU CALLED

From that point on, the menu item selected will only be

drawn once when on screen.




Amos 1.3 index 102 /146

1.388 menu x

x=Menu X(,,)

This function allows you to retrieve the position of a menu item
relative to the previous option on the screen. You can use this
information to implement powerful menus such as the one found in EXAMPLE
16.13 in the MANUAL folder on your AMOS1.2 PROGRAM disk.

y=Menu Y (,,)
Returns the Y coordinate of the menu option. Note that all coordinates
are measured relative to the previous item. So this is NOT a standard

screen coordinate.

1.389 embedded menu commands

Important Info:

The following embedded menu commands can be added to your menus
by including them in round brackets () in the menu definition
string. (eg.

Menu$

(1)="(locate 10,10 : INK 1,1) Hello"™ )

BOB

BOb n

Display BOB number n at the current cursor location. The HOT SPOT of
the BOB 1is not taken into account.

ICON
ICon n
Draw icon number n at the current cursor location.

LOCATE

LOcate x,yvy

Place the graphics cursor at x,y measured relative to the top left
corner of the menu line. After a graphics operation the new cursor
location will be at the bottom right corner of the last object drawn.

INK

INkKk n, index

Change the colour register of the PEN, PAPER or OUTLINE to index. If
n= 1 then the PEN is affected, 2 for the PAPER and 3 for the OUTLINE.

SEONT
SFont n
Set current font to graphics font number n.

SSTYLE

SStyle n

Set font style to n. n is a bit pattern. Bit 0 sets underline, 1
sets bold and 2 sets italic.

LINE
LIne x,y




Amos 1.3 index

103/ 146

Draw a line from the current cursor position to graphics coordinates
X, V.

SLINE

SLine p

Set line style to bit pattern in p. p should be entered as a decimal.
BAR

BAr x,y

Draw a rectangular bar from the current cursor location to x,y.
PATTERN

PAttern n

Set fill pattern to n.

OUTLINE

OUtline flag

If flag is 1 then outline mode is on. 0 turns it off.

ELLIPSE

ELlipse rl,r2

Draw an ellipse with the center at the current cursor position radii
or rl and r2.

1.390 dir

Dir [PATHS] [/W]

W will cause the directory to be printed in two columns.

1.391 dir$

s$=Dir$ Dir$=s$

Return or set the current directory.

1.392 parent

Parent

Jump up one directory.

1.393 set dir

Set Dir n [,filter$]

Set directory listings to n characters wide. filter$ contains a list




Amos 1.3 index 104 /146

of path names separated by / to be excluded from the directory list.
(eg. SET DIR 10,".INFO/x.INFO/*.*.INFO" )

1.394 dfree

f=Dfree

Returns the number of bytes free on the current disk.

1.395 mkdir

Mkdir £$

Make a new folder.

1.396 Kkill

Kill f£$

Erase a file on disk.

1.397 rename

Rename 0l1ld$ To new$

1.398 fsel$

f$=Fsel$ (path$ [,default$][,titlels,title2S])

Calls up the file requester and returns the selected file name or ""
if QUIT was selected.

1.399 run

Run f$

Run program f$ from disk.




Amos 1.3 index 105/ 146

1.400 exist

flag=Exist (£$)

Returns a value of -1
TRUE
)y 1f file f$ exists on disk.

1.401 dir first$

file$=Dir FirstS$ (path$)

Returns the first file name at location path$.

1.402 dir next$

file$=Dir Next$

Returns the name of the next file in the directory.
DIR FIRSTS
must

be called before this command. If there is not another file, then ""
is returned.

1.403 open out

Open Out c¢,n$

Open channel number c for output to file n$. If the file already
exists then the old one will be erased.

1.404 append

Append c,n$

Open channel number c for appending output to file n$.

1.405 openin

Open In c¢,n$

Open channel number c for input from file n$.




Amos 1.3 index 106/ 146

1.406 open port

Open Port channel, "PAR:" (Opens channel to the Parallel interface.)
Open Port channel, "SER:" (Opens channel to the Serial interface.)
Open Port channel,"PRT:" (Opens channel to the Printer interface

chosen from Workbench Preferences.)

OPEN PORT allows you to communicate with external devices such as
printers. All the standard sequential file commands can be preformed as
normal, except for commands like LOF or POF which are obviously only
relevant to disc operations.

1.407 port

n=Port (channel)

Tests to see if an input device is ready to send you some information.
If the device is ready for you to read it, n will have a -1(

TRUE

)

value or a 0(
FALSE
) value otherwize.

1.408 openrandom

Open Random channel, £$
Opens a RANDOM ACCESS file called f$. When you’re using this
instruction, you should always define the record structure immediately
after using the

FIELD
command.

1.409 field

Field channel, lengthl As fieldl$, length2 As field2$, ...

Field allows you to define a record which will be used for a random
access file. This record can be up to 65535 bytes in length.

1.410 get

Get channel, r

This loads the
FIELD




Amos 1.3 index 107 /146

selected strings with the information of out of
the random access file channel from record r. Note that you can only
use GET to retrieve records which are actually on disc. If you try to
grab a record which does not exist, then an error will be generated.

1.411 put

Put channel, r

PUT moves a record from the Amiga’s memory [following the

FIELD
command’s list of strings and sizes] to the record number in r to <+
the
random access file channel. Before using the PUT command, the strings
defined by the
FIELD

command should be defined.

1.412 close

Close [n]
Close channel number n. IF n isn’t supplied, Close will close all open
files.

1.413 print#

Print#c,variable list

Print data to channel c.

1.414 input#

Input#c,variable list

Input data from channel c.

1.415 line input#

Line Input#c,variable list LINE Input#c,separator,variable list
Same as

INPUT#

, but allows you separate your list of data using any
character you wish. If separator is omitted then the default is the

return character.




Amos 1.3 index 108/ 146

1.416 input$

x$=Inputs$ (f, count)

Read count number of characters from device number f.

1.417 eof

flag=Eof (c)

Returns -1 (
TRUE
) 1f the end of the file in channel c¢ has been reached.

1.418 lof

length=Lof (c)

Returns the length of the file in channel c.

1.419 pof

pos=Pof (c)

Reads the current reading or writing position of the file in channel
number c.

1.420 Iprint

Lprint variable list

Print a list of variables.

1.421 Idir

Ldir [path$][/W]

Print a directory.




Amos 1.3 index 109/ 146

1.422 amal important info

Up to 16
AMAL
programs can be run at the same time using
interrupts. more may be executed but they will not be running on

interrupts. Only the capital letters of an AMAL command are
significant. Each

AMAL

program has its own set of 10 internal

registers. FEach register starts with the letter R and is
followed by a number from 0 to 9 (eg. R1,R2,R3...).There are 26
external registers that can be accessed by other

AMAL

programs or
directly from Basic. They begin with the letter R and are
followed by another letter from A to Z (eg. RA,RB,RC...).

Special Registers
X and Y are internal registers and always contain the location of the
object being controlled by an
AMAL
program. Another internal register
is A. It contains the number of the image that is displayed by a

sprite
or
BOB

Operators

AMAL
expressions can include all the normal arithmetic operations,
except MOD. You can also use the following logical operations:
& logical AND
| logical OR

1.423 (amal) move

Move deltaX, delta¥Y, n

Move object to deltaX,delta¥Y relative to the objects current position
in n number of steps. If deltaX is positive the object will move to
the right, else to the left. If delta¥Y is positive then the object
will move down, else up. The smoothest movements are made when both
deltaX and delta¥Y are multiples of n.

1.424 (amal) anim

Anim cycles, (image,delay) (image,delay) ...




Amos 1.3 index 110/ 146

Animate an object. cycles is the number of times the animation will
be repeated. If cycles is 0 then the animation will be looped until
told to stop. 1image is the image number to be displayed and delay is

the time measured in 50ths of a second that it will remain until the
next image is displayed. After an animation command has been
initialized,
AMAL
will continue with the next instruction.

1.425 (amal) let

Let reg=exp

Save a value in an
AMAL
register. Possible
AMAL
registers are RO-R9
and RA-RZ.

1.426 (amal) jump

Jump L

Jump to label L. Labels are defined as a single letter followed by a
colon. A label name can be padded with lowercase letters to help them
read easier but make sure that the first letter of each label in an
AMAL program is different. (eg. Start: and Shoot: would be
considered the same thing and would cause an error.)

1.427 (amal) if

If exp Jump L

Perform a test and if the result is

TRUE

, then Jump to label L.
exp can be any logical expression =, <>, <, >. 1Its common
practice to pad out this instruction with lowercase commands like
"then" or "else". (eg. If X>100 then Jump Label else Let X=X+1 ).

If exp Direct L If exp eXit

The above variations of the If command are used by the

(Amal) AUTOTEST

feature explained later.

1.428 (amal) for to next




Amos 1.3 index 111/146

For reg=start To end ...Next reg

It is legal to have nested loops in an

AMAL
program but the step size
of the loop is always set to one. Only one step of a loop is

performed every vertical blank period.

1.429 (amal) play

PLay n

Play series number n of movements stored in the
AMAL
bank. These
movements are created using the

AMAL
accessory. When the PLay command

is used RO holds the tempo of the movements. larger the number in RO,
the faster the object will move. Rl controls the direction of the
movements. If R1=1 then the movements are play forward. If R1=0 then
the movements are played backward. If Rl= -1 then the movements are
stopped and

AMAL

continues with the next command.

1.430 (amal) end

End

Terminates the
AMAL
program and turns off the
(Amal) AUTOTEST
feature if
its been defined.

1.431 (amal) pause

Pause

Wait for the next vertical blank period. It is good practice to use a
Pause command before a
(Amal) Jump




Amos 1.3 index 112 /146

1.432 (amal) autotest

AUtotest (list of test)
AUtotest is a list of commands that are executed every 50th of a
second just before the main
AMAL
program is run. The possible
commands that can be used in an AUtotest list are:

Let
Let reg=exp
Same as the regular

AMAL
command
Jump
Jump label
Same as the regular
AMAL

command except label must lie inside the
Autotest list.

eXit
eXit
Leave Autotest and continue with the main program.

Wait
Wait
Turn off the main
AMAL
program and only execute the AUtotest.
If

If exp Jump label If exp Direct label If exp eXit
Jump is the same as the regular
AMAL
command. Direct will Jump
to a part of the main
AMAL
program after the AUtotest. eXit will
leave AUtotest and continue with the main program.

On
On
Restart the main
AMAL
program after a Wait command.
Direct

Direct label
After AUtotest is complete, the main
AMAL
program will continue
at label. label must lie outside of AUtotest.




Amos 1.3 index

113/146

1.433 (amal function) =xm

Returns the X hardware coordinate of the mouse.

1.434 (amal function) =ym

Returns the Y hardware coordinate of the mouse.

1.435 (amal function) =k1

Returns a value of -1 (
TRUE
) 1f the left mouse key has been pressed.

1.436 (amal function) =k2

Returns a value of -1(
TRUE
) if the right mouse key has been pressed.

1.437 (amal function) =j0

Returns a bit map containing the right joystick status.

Joy
for
more details.

1.438 (amal function) =j1

Returns a bit map containing the left joystick status.
Joy
for
more details.

1.439 (amal function) =z(n)

Returns a random number from 0 to n.

1.440 (amal function) =xh (s,x)

Converts screen coordinate x on screen s to a hardware coordinate.

See

See




Amos 1.3 index 114 /146

1.441 (amal function) =yh (s,y)

Converts screen coordinate y on screen s to a hardware coordinate.

1.442 (amal function) =xs(s,x)

Converts hardware coordinate x to a screen coordinate on screen s.

1.443 (amal function) =ys(s,x)

Converts hardware coordinate y to a screen coordinate on screen s.

1.444 (amal function) =bob col(n,s,e)

Identical to the
BOB COL
command. Returns a value of -1(
TRUE
) if
BOB
number n has collided with
BOB
s s to e. This command can not be used
with an interrupt driven
AMAL
program. See
SYNCHRO
for information on
non-interrupt
AMAL
programs.

1.445 (amal function) =sprite col(n,s,e)

Similar to
(Amal Function) =Bob Col (n,s,e)
, above.

1.446 (amal function) =c(n)

Returns a value of -1 (

TRUE

) 1f object n has collided with another
object. For use after an SpriteCol or BobCol command.




Amos 1.3 index

115/146

See
(Amal Function) =Bob Col(n,s,e)
or
(Amal Function) =Sprite Col(n,s,e)

1.447 (amal function) =v(v)

Returns the volume (0-255) of the current voice.

1.448 amal

Amal n,a$
Assign a$ to AMAL channel number n. If n > 16 then the AMAL program
will not be interrupt driven.

Amal n,p
Assign AMAL program number p in the AMAL bank to AMAL channel n.

Amal n,a$ To address
Copy the contents of registers X, Y and A into an area of memory

starting at address. The information will be saved like so:
Location Effect
Address Bit 0 is set to 1 if the X has changed.

Bit 1 is set to 1 if the Y has changed.
Bit 2 is set to 1 if the A has changed.

Address+2 Is a word containing the latest value of X.
Address+4 Holds the current value of Y.
Address+6 Stores the value of A.

1.449 amal on

Amal On [n] Amal Off [n]
Turn on all

AMAL
programs or Jjust program number n.

1.450 amal freeze

Amal Freeze [n]

Stops all
AMAL
programs or just number n. The




Amos 1.3 index 116/ 146

AMAL
programs can be
restarted with the
AMAL ON
command. Its a good idea to freeze all

AMAL
programs before disk access.

1.451 amreg

r=Amreg(n [,c]) Amreg(n [,c])=exp
Read an
AMAL
register or pass a value to an
AMAL

register. n is the
number of the register. Possible values range from 0 to 25

representing RA to RZ. If c is present then the internal registers of
the
AMAL
program in channel c can be accessed. In this case n must be

between 0 and 9 representing RO to R9.

1.452 amplay

Amplay tempo,direction([s To e]

Set parameters for
AMAL
play sequences in all channels or just
channels s to e. tempo set the delay in 50ths of a second between
each movement. direction is as follows:

Value Direction

>0 Forwards
0 Backwards
-1 Stop movement pattern and continue with next
AMAL
command

1.453 chanan

s=Chanan (c)

Returns a value of -1(

TRUE

) if the Anim sequence in channel c¢ is still
active.




Amos 1.3 index 117 /146

1.454 chanmv

s=Chanmv (c)

Returns a value of -1

TRUE

) if the Move command in channel c¢c i1s still
active.

1.455 amalerr

p=Amalerr

Returns the position of an error in the current
AMAL
program.

1.456 channel

Assign an
AMAL
channel to an object.

1.457 channel n to sprite s

Assign sprite number s to
AMAL
channel n. The X and Y registers
in the
AMAL
program will now control the hardware coordinates of
the sprite.

1.458 channel nto bob b

Assign BOB number b to
AMAL
channel n. The X and Y registers in
the
AMAL
program will now control the screen coordinates of the
BOB.




Amos 1.3 index 118 /146

1.459 channel n to screen display d

Assign screen number d to
AMAL
channel n. The X and Y registers
in the
AMAL
program now control the screen position in hardware
coordinates.

1.460 channel n to screen offset d

Assign screen number d to
AMAL
channel n. The X and Y registers
in the
AMAL
program now control the screen offset.

1.461 channel n to screen size s

Assign screen number s to
AMAL
channel n. The X and Y registers
in the
AMAL
program now control the width and height of the
screen.

1.462 channel n to rainbow r

Assign rainbow number r to
AMAL
channel n. The X register
controls the BASE of the rainbow and Y controls the starting line
and A stores the height. X and Y are hardware coordinates.

1.463 update every

Update Every n

Force
AMAL
programs to update only every n 50ths of a second. This
may free up some time for the main program and a result could make
things run faster.




Amos 1.3 index 119/146

1.464 rain

Rain (n, line) =c
c=Rain(n, line)

Set or Read the colour at line from rainbow n at any time.

1.465 rainbow

Rainbow n,base,y,h

RAINBOW activates Rainbow n starting base lines into the rainbow
defination at hardware screen location y with a length of h lines.

See your manual page 141 for further information reguarding safeguards.

1.466 set rainbow

Set Rainbow n,colour, length,r$,g$,bs

SET RAINBOW defins a rainbow effect which can be subsequently displayed
using the
RAINBOW
command. It works by changing the shade of a colour
according to a series of simple rules.

n is the number of your rainbow. Possible values range from 0 to 3.

colour is the colour index which will be changed by the instruction.
Note only 15 colours can be manipulated in this manner.

length is the size of the table used to store your colours. There’s one
entry in this table for each colour value on the screen. The size can
range from 16 to 65500. If length is less than the physical height of
your rainbow, then the colour pattern will be repeated for the full
length.

r$, g$, b$ are command strings which change the intensities of red,
green and blue respectively. Each entry controls a single screen line.

Each string can contain a whole list of commands. These will be cycled
until the final rainbow pattern is produced. The format is:

"(n,step, count) (n,step,count) ..."

n sets the number of lines to be assigned to the specific colour value
in the rainbow.

step holds the number to be added to the colour component [RGB] mod 15.
[Each component can go from 0 to 15, if a value exceeds 15, it is
set to 0. As well, if a value goes below 0, it’s set to 15.]




Amos 1.3 index 120/ 146

count is the number of times the current operation is to be repeated.

1.467 synchro

Synchro Off Synchro On Synchro
Release
AMAL
updating to Basic control. If more then 16
AMAL
channels

are going to be used then SYNCHRO must be used. First, call SYNCHRO OFF
before defining the
AMAL
programs. Then use SYNCHRO to activate the
next step in all the
AMAL
programs. To return to normal interrupts
use SYNCHRO On.

1.468 move X

Move X n,m$
Move Y n,m$

Define a movement for animation channel n.

m$ is the defination of movements.

Definations are as follows:

" (speed, step, count) (speed, step, count) ... [E#/L]"

The E directive allows you to have your object stop when it reaches a
certain location on the screen, such as "E100" will ensure that the
current x or y stops at 100.

The L directive allows the MOVE command to loop back to the first entry.

speed is the delay in 50ths of a second between each step. speed’s range
is 1 (mega fast) and 32767 (super mega slow) .

step is the amount the object will move. [Positive or negative pixels.]

count is the amount of times you want to do this movement.

Example: Move X 1,"(3,-4,10)E100" will move the X -4 pixels every
3/50th of a second for 10 times. E100 will ensure that X never

goes beyond 100.

See
MOVE ON-OFF




Amos 1.3 index 121 /146

for more details.

1.469 move on-off

Move On-0Off [n]
Move On [n]
Starts MOVE n or all movements. [Previously created using either the

MOVE X
or MOVE Y command. ]

Move Off [n]
Stops MOVE n or all movements. [They can’t be resumed after a stop.]

1.470 move freeze

Move Freeze [n]

This will stop movement n or all movements. [This is not perminant like
the MOVE OFF command. ]

To resume movements, use the MOVE ON command.

1.471 movon

x=Movon (n)

This returns a -1(

TRUE
) if the current channel has movement [a MOVE
command is running, not an AMAL movement]. Otherwize a O
FALSE
) 1is
returned.
1.472 anim

Anim n, a$
Define an image animation for animation channel n.

a$ 1s the defination of the image animation, which is executed every 50th
of a second like AMAL animations. Except these animations change the
object’s image # [in a

Sprite

/

Bob




Amos 1.3 index 122 /146

Bank].
Definations are as follows:
" (image,delay) (image,delay) ... [L]"
The L directive allows the ANIM command to loop back to the first entry.
image is the image # within a
Sprite
/
Bob
Bank to be displayed for
the delay period.

delay specifies the amount of time the image remains (in 50ths of a
second) .

Also see
ANIM ON-OFF

1.473 anim on-off

Anim On-0Off [n]
Anim On [n]
Starts ANIM n or all image animations. [Previously created using the

ANIM
command. ]

Anim Off [n]

Stops ANIM n or all image animations. [They can’t be resumed
after a stop.]

1.474 anim freeze

Anim Freeze [n]

This will stop movement n or all movements. [This is not perminant like
the ANIM OFF command. ]

To resume movements, use the ANIM ON command.

1.475 track load

Track Load "Name_Of_The_Module", Bank

Load up a tracker module into a chip memory bank. It will of course it
reserve the bank for you, and choose the correct bank size.




Amos 1.3 index 123 /146

If AMOS detects a Startracker synthetic instrument file (which must have
a ".NT" extension appended to the file name), it will load it AS WELL
into the bank. In fact you don’t have to worry about it.

1.476 track play

Track Play [Bank], [Pattern]
Plays a tracker module loaded into a bank.
"Bank" is the number of the bank to be played. If omitted, it is the last
loaded with the

TRACK LOAD

instruction, or upon running, bank number 5.
"Pattern" is the first pattern to be played. Use this with caution, as NO
CHECK is done on the number of the pattern. You can very simply crash the

computer by giving a bad value. This parameter is intended to allow you
to have more than one music in a tracker bank...

1.477 track loop on-off

Track Loop On-Off

Enable or disable looping when the tracker music is finished.

1.478 track stop

Track Stop

Stops a tracker music being played.

1.479 important tracker notes:

The Tracker-playing instructions are implemented to give you a <+
quick way
of playing modules. It is not as powerful as the normal AMOS music system.

For example:

* Do not play a normal AMOS music while playing a tracker module,
this can lead to unpredictable results.

* Do not start any sample, or sound effect when a Tracker module is played.

* A Tracker module uses and initialises all four voices, even if your music




Amos 1.3 index 124 /146

is only on 3 or 2. So do not play any sample on the other voices you think
are free. They are not!

* VOLUME instructions do not have any effect on the Tracker music, but

VUMETER
works fine with a Tracker module.

if you want to make sound effects while a music is playing, then you
should use the Soundtracker converter, and the normal AMOS Music system...

1.480 sload

Sload File_Number,Length To Address

A new instruction intended to load parts of a sample, but it can be used
in many other ways.

This instruction is an extended
BLOAD

"File_Number" is the number of a file opened previously with the

OPEN IN
File_Number, "Name" instruction.

"Length" is the number of bytes to load. If this number is bigger than
the actual size of the file, then only the remaining bytes are loaded,
without errors. You’ll get an error if you try to load once more after
the end has been reached.

"Address" is the destination address. Of course, the memory must have
been previously reserved.

The advantage of this instruction, is that you can set the position of
the file pointer with the

POF

()= instruction before using SLOAD. As you
can see, this instructions can have a lot more usage than just loading
samples...

1.481 sam swap

Sam Swap Voices To Address,Length

This instruction initialise the sound-swapping. The actual swapping will
only occur when the actual buffer has been totally played through the
speaker. The swap is done under interrupts, so you will not hear any tick
in the sample.

"Voice" is a bit pattern to define the voice concerned, just like in the




Amos 1.3 index

125/146

SAM RAW
instruction.

"Address" is the address of the next buffer to play. Of course, it must
be in chip memory.

"Length" is the number of bytes to play.

1.482 sam swapped

=Sam Swapped (Voice_Number)

This function returns a boolean value (
TRUE
-1, or
FALSE
0). It is the
key function in synchronising double buffer players.

"Voice_Number" is the number of the voice you want to have information
about (0 to 3). Do not make mistake, is it NOT a bitpattern.

It returns
TRUE
if the sample swapping has occurred, it means the new
buffer you have initialised with the
SAM SWAP
instruction is being
played at the very moment. It returns
FALSE
if not.

Practically, you can only load a new part of the sample in the free
buffer, when the SAM SWAPPED instruction returns you a
TRUE
value. It
returns
FALSE
if the sample swapping has NOT happened.

1.483 sam stop

Sam Stop [Voice_Pattern]

This simple instruction seems to have been forgotten in the instruction
set since the beginning. The only way to stop a sample playing, was to
use the PLAY instruction!

"Voice_Pattern” is a bit pattern defining the voices to be stopped, like

in the
SAM RAW




Amos 1.3 index 126 /146

instruction. All voices will be affected if you omit it.

NOTE: it is perfectly possible to have an AMOS music bank playing on 2
voices, and double-buffered samples playing on the last 2. (hey, but not
a Tracker module, if you remember what I told you!)

1.484 author note on =col(bob)

Well, in fact, it is not a new instruction, but a good enhancement <=
to the

collision detection method.
To detect a collision, I remind you, you have to use one of the collision
detection functions (=

Bob Col

0, =

Sprite Col

0, =

Bobsprite Col

()I

Spritebob Col

()). When this function returns a

TRUE

value, you have
to explore the =

Col

() reserved array to find out which bob or sprite
created the collision.
The problem, is that you had to write a loop exploring sequentially all
the

Col

() array. This was eating a lot of processor time. You could see
certain games slowing down when some bobs were colliding.

I wanted to do something to correct it. But what? The problem with AMOS,
is that if I change the syntax or the behaviour of one instruction to
please certain people, it may (and surely will) not be compatible with
thousand of existing programs!

So I found a -rather tricky- solution to this problem.

Col
(Number) behaves normally if you send it a POSITIVE number as an
argument, this keeps it compatible with all existing programs.

If "Number" is negative, AMOS will first remove the sign, i.e. turn it
into a positive number.
Then it will explore the

Col

() array himself, and find the first
non-zero value higher than —-Number. Then it will not return

TRUE

or

FALSE




Amos 1.3 index

127 /146

’
as it used to, but the actual number of the bob colliding.
To get the next bob colliding, simply call it again with a this number,
minus one..

Example, this small and fast loop, will give all bobs colliding with bob
zero:

B=
Bob Col
(0)

BB=0
Repeat

BB=

Col
(= (BB+1))

If
BB

Print
"Bob";BB;" is colliding..."

End if

Until
BB=0

You can certainly remark that with this method, it is impossible to get the
collision of bob number zero. That’s why I say this was not perfect...

1.485 disc info$

=Disc Info$ ("Name")
..1s a new instruction that returns information on any disc.

"Name" is the name of a file or a directory of the disc you want to have
information about. The string returned has the following form:

"NAME_OF_THE_DISC:XXXXXXX" , where XXXXXXX is the free space on the disc.
To get both, use this simple method:

AS=DiscInfo$ ("Df0O:")

C=
Instr
(AS,":")
NS$=
Lefts$
(A3, C)
F=
Val

(AS,C+1)




Amos 1.3 index

128 /146

Print
"Name of the disc :";N$;" Free space:";F

1.486 prg state

=Prg State (returns the current status of a program)
=Prg State

This little handy function let you know how your program was launched.
It returns three possible values:

0 : if your program was run under the AMOS interpreter.
1 : if your program was run under RAMOS run-only.
-1 : if your program is compiled.

1.487 bgrab

Bgrab b

b is the bank that Bgrab "borrows" from the current program being
edited. [This only works from within an Accessory.] If there is a bank
already in the accessory, it’s erased and replaced with the new one.
When you exit the Accessory, the "borrowed" bank will be returned to the

main program along with any changes. [Bank #’s 1 to 15.]

Note: This instruction can only be done in an Accessory. If you
attempt it otherwize, you’ll get an appropriate error.

1.488 prun

Prun "filename"

This is identical to choosing the Run Other from the Editor’s menu.
Also, all screens/sprites/bobs/music will need to be kept prior to using
the PRUN command and restored by your program after the PRUN has

finished, to ensure your data remains intact. See EXAMPLE 3.3 in the
MANUAL folder on your AMOS1.2 PROGRAM disk.

1.489 prg first$

pS=Prg First$

This returns the name of the first AMOS basic program in memory [loaded
with the Load Other editor option]. It’s used in conjunction with the




Amos 1.3 index

129/ 146

PRG NEXTS$
command to create a full list of available programs.

1.490 prg next$

pS$=Prg Next$

This is used after the
PRG FIRSTS
command to continue to read the
available AMOS basic programs in memory [loaded with the Load Other
editor option]. When the list is complete, a string of "" will be
returned.

1.491 psel$

n$=Psel$ ("filter", [default$,titlels$,title2S])

PSELS calls up a program selector simular to the one used by Run Other,
Load Others, Edit Others and New Others. This can be used to select a
program in the usual manner. The selected file will be returned in n$,
which can be
PRUN
If QUIT was selected, n$ will be set to "".

filter sets the type of programs which will be listed by this
instruction. These can be:

"% ACC" List Accessories.
"x AMOS" List Amos programs.
Tx &M List All files.

For further details, see the
FSELS
and
DIR
commands.

1.492 getting the system time

You will find on your updated disc (1.34) a program called "

GET_TIME.AMOS".
This program includes two procedures to get the time and date from
the system.

Call the procedure, and you’ll have in Param$ the current clock time under

the following format: 00:00:00




Amos 1.3 index

130/ 146

_TIMES

Print
Param$

11:04:04

1.493 getting the system date

You will find on your updated disc (1.34) a program called "

GET_TIME.AMOS".
This program includes two procedures to get the time and date from
the system.

This procedure returns the current date in Param$:
_DATES

Print
Param$

21/06/1991

1.494 safe amigados execute

Safe AmigaDos EXECUTE.

It is perfectly possible to launch an external program from AMOS. But in
order to do so, you have to know some of the AmigaDos internal functions.
That’s why you will find on your updated disc a small program with a
procedure called _EXECUTE.

Just transmit an AmigaDos command to this procedure, and it will launch
it out of AMOS. To run an external program, use:

_EXECUTE ["RUN >NIL: <NIL: Program_Name.AMOS"]

You can launch other CLI commands (like "Assign"). Of course
if you want to see the display, you have to perform an

AMOS TO BACK

instruction.

As the Amiga is a multitask machine, your AMOS program will go on running

as well as the launched program. Of course the speed will be bit reduced,
depending on the other program.

1.495 no icon mask

P




Amos 1.3 index

131/146

NO Icon MASK [number] (Remove the mask from an icon).

This instruction has simply been forgotten in the manual. It simply
does the same job as

NO MASK

, but for icons.

1.496 rainbow del

Rainbow Del [Number] (Delete on or all rainbows).

Another instruction forgotten in the manual, but very useful when you
want to get rid of a rainbow!
"Number" specify the number of the rainbow to remove, or all if omitted.

1.497 multi wait

Multi Wait (Force a multi-task wait vbl)

To make effective multi-tasking programs, you must not grab most of the
processor time, leaving only a limited amount of power for other tasks.
MULTI WAIT does a MULTI-TASK wait vbl. You should use it in your
programs main loop, when you wait for example, for a menu item to be
selected.

Note that you should not use this instruction to make accurate
screen synchronisation as it is designed to multi-task. This instruction
is not consistent at all! It may skip many VBLs, depending on the number
of running tasks at the time.

If you missed it elsewhere in the manual, Multitasking can be
activated by pressing Amiga+A to flick between AMOS and the CLI or

Workbench environments. This allows systems with at least 1 meg to run
AMOS and programs like DPaint III at the same time!

1.498 amos to back

Amos To Back (Hide AMOS from view and show the Workbench)

This will bring forward the Workbench display, allowing you to access
other programs.

1.499 amos to front

Amos To Front (Switch AMOS to the display)

AMOS is forced back onto the display with this command, leaving the
Workbench hidden.




Amos 1.3 index 132 /146

1.500 amos here

x=Amos Here (Report which task is on display)
This returns
TRUE
if AMOS is currently displayed and
FALSE

if the
Workbench is in view.

1.501 amos lock

Amos Lock (Locks AMOS in front position)
This instruction first does an "

AMOS TO FRONT

", and then disable

the AMIGA-A system. Use this instruction if you do not want people
to know your program was written in AMOS.

1.502 amos unlock

Amos Unlock (make AMIGA-A active)
Just restores the AMIGA-A Workbench/AMOS flipping. You may want people to

stay under AMOS during certain parts of your program for example, to
see your name (!) and then free them.

1.503 bank swap

Bank Swap numberl, number?

This instruction will swap the pointers of the two banks. Useful if you
want to turn an icon bank into a sprite bank. Example:

Bank Swap 1,2
or have more than one music bank at the same time, for example:

Bank Swap 3,5

1.504 laced




Amos 1.3 index 133/ 146

Laced (Function to open an interlaced screen)

To open an interlaced screen use the following syntax:

Screen Open
0,320,200,16,LACED [+HIRES] [+LOWRES]

LACED is a function that returns 4.

Important: As soon as one screen is opened with Interlace, all the other
screens turn to interlace. The interlacing will only truly effect the
screen actually opened with LACED. All the others will just have their
vertical lines doubled on the screen to adjust to the special mode.

Interlaced mode is perfect for displaying pictures, but
animation runs at half normal speed. Games should not be written in
Interlace!

As soon as the last interlaced screen is closed the whole
display returns to normal mode. Your TV monitor might not like lots of
fast switching from normal mode to Interlace, so you are advised not to
do this excessively.

All normal operations are available in interlaced screens:

SCREEN OFFSET

4

SCREEN DISPLAY

and so on. The only problem that arises is
due to interlacing being software driven in AMOS. The bitplanes are
changed during the vertical blank and this particular interlace process
is forbidden during copper list calculation.

So if you have a large copper list (i.e.. four screens, one
interlaced, and a rainbow), and have a copper calculation to do, the
interlaced screen will display only half of the picture during the
calculation. Nothing can be done to solve this, it is simply a

limitation of the whole system.

There are two extra screen commands in AMOS now. These allow a program
to work out what type of display it is being run on:

1.505 display height

=Display Height (Report how tall a screen can be)

This command returns 311 in PAL and 263 in NTSC.

1.506 ntsc




Amos 1.3 index 134 /146

=Ntsc (Flags the type of display in operation)

This returns

TRUE

if the system is in NTSC mode or
FALSE

if in PAL.

Ideal for international software development!

NTSC refreshes the screen at 60 times a second whereas PAL
screens refresh at only 50 times a second. However, AMOS1.3 compensates
for this and now music runs at exactly the same speed in PAL and NTSC

AMAL
also relies on the interrupt routine but is not slowed down
to comply with PAL speeds. You must therefore be careful not to
synchronise music and animations by just relying on the speed they run
at. Check that an animation frame has been reached or the music has
played a certain note. Using this technique you’ll ensure the software
executes at the right points on all systems.

1.507 requeston

Request On (Generate a requester routine)

This will make AMOS use its own requester routine and is the
default.

See

REQUEST WB
for important usage notes.

1.508 request off

Request Off

AMOS will always select the CANCEL button of the requester if this
command is used. The actual requester will not be displayed, so this is
ideal for error trapping within a program.
See
REQUEST WB
for important usage notes.

1.509 request wb

Request Wb

This tells AMOS to switch back to Workbench’s system requester. You’ll




Amos 1.3 index

135/146

come back to AMOS as soon as you have chosen one of the options.

Note: If you don’t load up the Requester (by deleting it from the
extension list using the config file), the normal Workbench requester
will be used for displaying messages.

This does have a bad side-effect though, AMOS will seem to have crashed
when a requester appears. If this happens you must simply press Amiga+A
to return to the Workbench, answer the question and press Amiga+A once
again to return to AMOS. It’s only best to avoid loading the requester
when memory is very low!

1.510 bob-sprite flipping

Bob and sprite flipping commands.

In a great number of games, the main character needs to animate left to
right, and up and down. Up to now, you were obliged to keep in the
sprite bank reversed copies of small animation sequences for the main
character. As the main character usually has the best animation, you
lose an enormous amount of space!

For the game RanXerox, for which AMOS author Francois Lionet
wrote the sprite routines, a flipping routine was developed which
allowed just one copy of the main character to be kept in the bank. This
routine has been enhanced and placed into AMOS.

How does it work? Imagine your character is walking to the left
and then back to the right. You would only have in your bank the image
of him walking to the right. To display this right image, you simply
refer to the image number in the bank as usual.
To display the image reversed in the X axis (left walking
image), you set bit number 15 of the image number to 1. Don’t panic, you
can simply do it with:
$8000+Image number
So:
Bob
1,160,100,1
will display your character walking right, and:
Bob
1,160,100, $8000+1
will display it walking left. The same principle is used for vertical
reversing. For this, bit number 14 is used - add $4000 to the image

number. To have a vertical and horizontal reversing, use $C000.

The symmetry is a full symmetry: The hot spot of the bob is also




Amos 1.3 index 136/ 146

reversed. For example, if we had put the hot spot in X under the feet of
our character, the reversed version would also have it under his feet.
So be careful if you set the hot spot on the top left corner on a bob,
the reversed image will be displayed at the top left!

You might say that $8000 and $C000 are a bit weird to use. We
have provided special functions to give a better AMOS interface:

=Hrev (image) adds $8000 to the image
=Vrev (image) adds $4000
=Rev (image) adds $C000

Use them in place of the hex values:

Bob 1,160,100,10

Bob 1,160,100,Hrev (10)
Bob 1,160,100,Vrev (10)
Bob 1,160,100,Rev(10)

To allow easy use of the bob flipper in AMAL, we have implemented
Hexadecimal evaluation. So you can use hex notation to refer easily to
reversed bobs. If hex frightens you, just add $8000, $4000 or $CO000
before all references in your AMAL strings. Example:
0ld
AMAL
string:
"Anim 0, (1,2) (2,2) (3,2) (4,2)"
New reversed string:
"Anim 0, ($8000+1,2) ($8000+2) ($8000+3) ($8000+4)"
or
"Anim 0, ($8001,2) ($8002,2) ($8003,2) ($8004,2)"
If you use a register to calculate the image number, do not try to
modify the calculation itself, but only when you assign the register to
the image.
0ld
AMAL
string:
For RO=1 To 10; Let A=R0; Next RO

New one:

For RO=1 To 10; Let A=$C000+R0O; Next RO

How does the flip routine work?

It is really important for you to understand how it works internally, so
that you do not ask this system to do things it is not designed to do.




Amos 1.3 index 137 /146

The reversing system is designed to free memory before trying to
be fast (although we would not mind if it was actually fast, would we?).
Concessions had to be made to have it fast, and at the same time easy
and powerful.

The routine actually works right in the middle of the bank, and
does not use any extra memory. The bobs are flipped during the update
process, Jjust before a bob is redrawn on the screen. AMOS looks to see
if the image needs to be flipped in the bank. If it does, it is flipped
and a flag is set within the bank. On the next update, if the bob image
has not changed, it will not be flipped, thus saving a lot of time.

If you understand the above, you will also realise one big
limitation. It is not wise to use more than one flipped bob pointing to
the same image. Let’s see the next example:

Bob
1,160,100,1

Bob
2,160,150,%$8001

Bob
3,20,20,%4001

Bob
4,20,100,$C001

Update

During the

UPDATE

process, AMOS will first draw bob number 1. No
problem, it is in the right position. Then bob number 2 - AMOS needs to
reverse it in X. Bob number 3 needs a Y and an X reversing (to put the
bob back to normal in X!). Then bob number 4 needs an X flipping.

On the next update, providing the bob’s image has not changed,
to display bob 1, AMOS will have to flip it in X and Y, then bob 2...

As you can see, for each
UPDATE
, that is, every 50th of second,
if the bobs move they need to be reversed! This will work, but will take
a lot of processor time, and the animation will be disastrous.

So the golden rule is, use the reversed bobs for objects alone
on a screen (or be sure that normal and reversed images are not
displayed at the same time on the screen). If you want, you can have two
bobs like this - experiment!

We told you before that this system was for use with bobs. Yes,
it is totally automatic with bobs. But as it directly affects the sprite

bank, you can also use it with sprites.

When a hardware computed sprite is calculated, AMOS looks into




Amos 1.3 index 138/ 146

the sprite bank and gets the image from it. If the image is reversed at
that moment, the hardware sprite will display a reversed image. You can
therefore have reversed hardware sprites using this method. But you
cannot do this for example:

Sprite
1,200,200,%8001

Pasting flipped bobs

PASTE BOB
also accepts reversed images. A simple trick to reverse an
image in the bank without having to display a bob, is to PASTE the
reversed image outside of the screen. Example:

Paste Bob
500,500, %C000

This will reverse image 4 in the bank, without any output (and quite
fast) .

Collision detection

This is an important point, and you have to be very careful when you
detect collisions with reversed bobs!

The collision detection uses the shapes in the bank at the very
moment it is called. Let’s see an example that will never work:

Bob
1,160,100,1
Do

Bob
2,XScreen (XMouse) , YScreen (YMouse) , $8001

Wait Vbl

Exit
if
Bob Col
(1)
Loop

Why doesn’t it work? We have two reversed images of the same definition
in the bank. After the updating process, the image in the bank is left
reversed. So the
Bob Col
instruction will take bob shape 1, the reversed
image, and this will not work!

So remember: Thou shalt never use collision detection with more




Amos 1.3 index

139/146

than one reversed image on the screen!
How is it coded into the sprite bank?
Two bits of each images X Hot Spot are used to flag the flipping (at

SPRITE BASE
+6) .

Bit number 15 for X 0 if normal, 1 if reversed
Bit number 14 for Y 0 if normal, 1 if reversed

Before RUN and SAVE, the bank is restored to its normal state, so that

it is still compatible with version 1.1.

1.511 hrev block

Hrev Block (Flip a block horizontally)
Hrev Block image

Flips block number image horizontally.

1.512 vrev block

Vrev Block (Flip a block vertically)
Vrev Block image

Flips block number image vertically.

1.513 (bob) priority reverse on-off

Priority Reverse On-0Off (Change the order in which Bobs are printed to

the screen)

Priority Reverse On
Priority Reverse Off

Priority Reverse On, reverses the entire bob’s priority table. This
means that bob number 1 will be the first one drawn in front of all
other bobs, 2 will come in second etc... This priority list is
compatible with STOS.

This instruction has another feature when used in conjunction
with the PRIORITY ON command. The bobs are not printed from TOP to

BOTTOM any more, but from BOTTOM to TOP! The highest bob on the screen

will be displayed in front of the others.




Amos 1.3 index 140/ 146

1.514 serial open

Serial Open (Opens a channel for Serial I/O)
Serial Open channel, port_no [,shared, xdisabled, 7wires]
Opens a communication channel to a serial device.

Channel This is an identification number which will be used for all
subsequent communication commands. Allowable values range from 0 to 3.

Port_no Specifies the logical device number of the serial port.
Normally, this value should be set to zero. However, if you’ve plugged a
MULTI SERIAL card into your Amiga, you can access your additional ports
using the numbers from one onwards.

Shared (optional) This is a flag which informs AMOS that the device can
be shared with other tasks which are currently running on your Amiga.
It’s used in multitasking. A value of
FALSE
(zero) will grab the channel
for AMOS Basic, and will deny access to any other program. If it’s is
set to
TRUE
(-=1), the serial port can be shared between several programs
in memory. Beware: This system must be used with extreme care or the
Amiga could easily crash!

Xdisabled (optional) Toggles XON/XOFF checking during transmission of
your data over the serial line. It’s essential to set this flag when you
are first opening the device, even if it will only be required later.
The default value is
FALSE
(0) and disables the system. If you want to
enable the checking, use a value of
TRUE
(=1). After the port has been
opened, you’ll then need to set the XON and XOFF characters using a
separate call to the Serial X command.

TWires (optional) A value of
TRUE
(-=1) tells the device to use the 7
wires system as explained in the official Commodore documentation. The
default is
FALSE
(0) .

When you call the Serial Open command for the first time, it will
automatically load the SERIAL.DEVICE library from your system disc. So
make sure it’s available from the current drive.

Default settings depends on the number in "Port_no":

—-Port_no=0 refers to the default serial port, it will be opened using the
parameters set in the "Preference" workbench program. You should open this




Amos 1.3 index 141 /146

port if you use the workbench.

—-Port_no=1 refers to the built in serial port. Every Amiga has one. This
is the port you should open. The default settings will be set for this port
to use the French minitel: 1200 Baud, 7 bits, 1 stop bit, Even parity.
This can be easily changed using the
Serial Speed

4
Serial Bits

or

Serial Parity
instructions if required.

—-Port_no>1 can only be used if you have a multi-serial card.

1.515 serial close

Serial Close (Closes one or more serial channels)

Serial Close [channel]

If you don’t include the channel number, Serial Close will close all
currently opened serial channels with absolutely no error checking. The
optional channel number allows you to close a single channel and uses

all the normal error checks.

Note: Whenever a program is RUN from AMOS Basic, any opened channels
will be automatically closed for you.

1.516 serial send

Serial Send (Output a string via a serial channel)
Serial Send channel, tS$
Sends the string t$ straight to the specified serial channel. It does
not wait for the data to be transmitted through the actual port. You’ll
therefore need to use the =

Serial Check

(Channel) function to detect when
the transmission has been completed.

1.517 serial out

Serial Out (Outputs a memory block via a serial channel)
Serial Out channel, address, length

This is identical to




Amos 1.3 index 142 /146

SERTIAL SEND
except that it works with RAW data.

Address is the address of your data in memory.
Length is the number of bytes to be sent.

1.518 serial get

Serial Get (Gets a byte from a serial device)
=Serial Get (channel)

Reads a single byte from the serial device. If nothing is available a
value of -1 will be returned.

1.519 serial input$

Serial Input$ (Gets a string from the serial port)
=Serial Input$ (channel)

Reads an entire string of characters from the serial port. If there’s no
data, the command will return an empty string "". Otherwise the string
will contain all the bytes which have been sent over the serial line up
to the present time.

Be careful when using this command with high speed transfers
(such as MIDI). If you wait too long between each Serial Input$ command,
you can overload the system completely, and generate annoying errors
such as "string too long" or "serial device buffer over-run".

1.520 serial speed

Serial Speed (Sets the transfer baud rate for a serial channel)
Serial Speed channel, baud rate

Sets the current transfer rate of the appropriate channel. The same
value will be used for both reading and writing operations. Note that
you can’t set split baud rates for a single channel. If the baud rate

you have specified is not supported by the current device, it may be
rejected by the system.

1.521 serial bits

Serial Bits (Sets the Nbit & Stopbit part of a protocol)

Serial Bits channel, nbits, stopbits




Amos 1.3 index

143 /146

Assigns the number of bits which will be used for each character you
transmit.

Nbits is the number of bits
Stopbits is the number of STOP bits

1.522 serial parity

Serial Parity (Sets the parity checking, correct version)
Serial Parity channel, parity

Sets the parity checking you are using for the current serial channel.
Here’s a list of the available options.

Parity can have 5 different states:

no parity
EVEN parity
ODD parity
SPACE parity
MARK parity

w NP O

See the Commodore documentation for a full explanation of this system.

1.523 serial x

Serial X (Sets XON/XOFF)

Serial X channel, xmode (Activates/deactivates the XON/XOFF handshaking
system)

A value of
TRUE
for Xmode disables handshaking. Any other wvalue turns it
on. Xmode should be loaded with the correct control characters. These
must be specified in the following format:

Xmode=XON%$10000000+XOFFx$10000

Check Commodore’s documentation for more information.

1.524 serial buffer

Serial Buffer (Sets the size of the serial buffer)
Serial Buffer channel, length

Allocates length bytes of buffer space for the required channel. Note




Amos 1.3 index 144 /146

that the default value is 512 bytes and the minimum allocation is 64
bytes.

It’s a good idea to increase the buffer size for high speed
transfers.

1.525 serial fast

Serial Fast (Switches on FAST transfer mode)

Serial Fast channel

This sets a special fast flag in the current device and disables a lot
of internal checking which would otherwise slow down the communication

process. Use it for high speed transfers such as MIDI.

Warning: When you call this command, the protocol will be changed to:
PARITY EVEN,NO XON/XOFF and 8 bits.

1.526 serial slow

Serial Slow (Switches serial transfer back into SLOW mode)
Serial Slow channel

Slows the serial device back to normal speed and reactivates all the
error checks.

1.527 serial check

Serial Check (Reports on current serial device activity)
=Serial Check (channel)

Asks the device for a read-out of its current status. You can use it to
check whether all the information you’ve transferred with a previous

SERIAL SEND
command has been sent.

CHECK=
FALSE
(0) => if the last serial command is still being
executed.
CHECK=
TRUE

(-1) -> All done!




Amos 1.3 index 145/ 146

1.528 serial error

Serial Error (Reports success or failure of last transfer)
=Serial Error (channel)

Looks for the ERROR byte in the serial device. A value of zero indicates
that everything is fine. Otherwise, the last transmission was faulty.

1.529 serial sending tips
Sending large strings

Transmitting a large string may take quite a long time, especially at
low baud rates. As AMOS is multitasking, your program will continue to
run AFTER a

SERIAL SEND

instruction.

It’s essential to avoid provoking a garbage collection before
the transfer has been completed, otherwise your data will be corrupted.
So:

Use the =
SERTAL CHECK
function before doing a lot of string work.
Perform a garage collection using X=FREE to ensure that your program
will not provoke one automatically.

Use the
SERTAL OUT
channel, address, length instruction
with ’address’ containing the location of a previously reserved memory
bank.

More information about the Amiga’s serial system can be found in the

Commodore ROM KERNEL Reference Manual, Library and Devices. This will
allow expert users to make maximum use of the serial device.

1.530 dev first$

=Dev First$ (Get first device from the current device list)
dev$=Dev First$("filter")

Works the same as
Dir First$

and
Dir Next$
, but reports back the device
list. Note that you should remove the spaces with -" " to get the right

name.




Amos 1.3 index 146/ 146

1.531 dev next$

=Dev Next$ (Get the next device satisfying the filter)
dev$=Dev Next$
Gets the next device from the device list. A null string indicates the
end of the list has been reached. Example:

Print

Dev First$

Do
AS=Dev Next$
A$=A$—" "
If AS="" Then
End
Print
AS

Loop

1.532 set tempras

Set Tempras [address,size]

Warning, due to the nature of this instruction, it is suggested you
re-read the command in your manual and all of it’s associated commands.

Set Tempras is in your manual on page 71.

1.533 rem

Rem Comment.
' Comment.

Note the ’ shortform can only be used at the beginning of a line.




	Amos 1.3 index
	Index
	the editor
	keyboard macros
	scan$
	close workbench
	close editor
	set buffer
	free
	dim
	data
	read
	left$
	right$
	mid$
	instr
	upper$
	lower$
	flip$
	space$
	string$
	chr$
	asc
	len
	val
	str$
	sort
	match
	inc
	dec
	add
	acos
	cos
	tan
	sin
	atan
	hsin
	hcos
	htan
	degree
	radian
	log
	exp
	ln
	pi#
	sqr
	abs
	int
	sgn
	rnd
	randomize
	max
	min
	swap
	fix
	def fn
	fn
	poke
	peek
	hunt
	rol
	hex$
	bin$
	varptr
	copy
	fill
	btst
	bset
	bclr
	bchg
	areg
	pload
	call
	doscall
	restore
	wait
	timer
	not
	true
	false
	procedure
	end proc
	global
	shared
	param
	pop proc
	goto
	gosub
	return
	pop
	if...then...[else]
	for...next
	while...wend
	repeat...until
	do...loop
	exit
	edit
	direct
	system
	end
	on...proc
	on...goto
	on...gosub
	every n gosub
	break on-off
	on error goto
	resume
	errn
	error
	memory banks
	reserve
	listbank
	erase
	start
	length
	load
	save
	bsave
	bload
	screen open
	screen close
	auto view
	default
	view
	load iff
	save iff
	screen display
	screen offset
	screen clone
	dual playfield
	dual priority
	screen
	screen to front
	screen to back
	screen hide
	screen show
	screen height
	screen width
	screen colour
	scin
	default palette
	get palette
	cls
	screen copy
	screen base
	def scroll
	scroll
	screen swap
	logbase
	phybase
	physic
	logic
	wait vbl
	appear
	fade
	flash
	shift up
	shift down
	shift off
	zoom
	cop logic
	cop move
	cop movel
	cop reset
	cop wait
	copper off
	cop swap
	copper on
	spack
	pack
	unpack
	pen
	paper
	inverse on-off
	shade on-off
	under on-off
	writing
	locate
	cmove
	at
	x text
	x graphic
	home
	cdown
	cdown$
	cup
	cup$
	cleft
	cleft$
	cright
	cright$
	x curs
	set curs
	curs on-off
	memorize
	remember
	cline
	curs pen
	centre
	set tab
	tab$
	repeat$
	inkey$
	scancode
	key state
	key shift
	set input
	input$(n)
	wait key
	key speed
	clear key
	put key
	input
	line input
	print
	print using
	zone$
	border$
	hscroll
	vscroll
	text
	get fonts
	get disc fonts
	get rom fonts
	font$
	set font
	set text
	text styles
	text length
	text base
	wind open
	wind save
	border
	title top
	title bottom
	window
	=windon
	wind close
	wind move
	wind size
	clw
	hslider
	vslider
	set slider
	ink
	colour
	=colour
	palette
	gr locate
	xgr
	plot
	point
	draw
	box
	polyline
	circle
	ellipse
	set line
	paint
	bar
	polygon
	set pattern
	set paint
	gr writing
	clip
	sprites
	sprite
	get sprite palette
	set sprite buffer
	sprite off
	sprite update
	x sprite
	get sprite
	del sprite
	x screen
	x hard
	i sprite
	sprite base
	bob
	double buffer
	set bob
	no mask
	autoback
	bob update
	bob clear
	bob draw
	x bob
	i bob
	limit bob
	get bob
	put bob
	paste bob
	bob off
	hide
	show
	change mouse
	mouse key
	mouse click
	x mouse
	limit mouse
	joy
	jleft
	jright
	jup
	jdown
	fire
	sprite col
	bob col
	spritebob col
	bobsprite col
	col
	hot spot
	make mask
	reserve zone
	set zone
	zone
	hzone
	mouse zone
	reset zone
	priority on-off
	update
	paste icon
	get icon
	get icon palette
	del icon
	make icon mask
	icon base
	get block
	put block
	del block
	get cblock
	put cblock
	del cblock
	boom
	shoot
	bell
	volume
	sam play
	sam bank
	sam raw
	sam loop
	play
	set wave
	wave
	noise
	del wave
	sample
	set envel
	say
	set talk
	music
	music stop
	music off
	tempo
	mvolume
	voice
	vumeter
	led
	menu$
	menu on
	choice
	on menu proc
	on menu gosub
	on menu goto
	on menu on-off
	on menu del
	menu key
	menu off
	menu del
	menu to bank
	bank to menu
	menu calc
	menu inactive
	menu active
	menu line
	menu tline
	menu bar
	menu movable
	menu static
	menu separate
	menu link
	menu base
	set menu
	menu mouse
	menu called
	menu item movable
	menu item static
	menu once
	menu x
	embedded menu commands
	dir
	dir$
	parent
	set dir
	dfree
	mkdir
	kill
	rename
	fsel$
	run
	exist
	dir first$
	dir next$
	open out
	append
	open in
	open port
	port
	open random
	field
	get
	put
	close
	print#
	input#
	line input#
	input$
	eof
	lof
	pof
	lprint
	ldir
	amal important info
	(amal) move
	(amal) anim
	(amal) let
	(amal) jump
	(amal) if
	(amal) for to next
	(amal) play
	(amal) end
	(amal) pause
	(amal) autotest
	(amal function) =xm
	(amal function) =ym
	(amal function) =k1
	(amal function) =k2
	(amal function) =j0
	(amal function) =j1
	(amal function) =z(n)
	(amal function) =xh (s,x)
	(amal function) =yh (s,y)
	(amal function) =xs(s,x)
	(amal function) =ys(s,x)
	(amal function) =bob col(n,s,e)
	(amal function) =sprite col(n,s,e)
	(amal function) =c(n)
	(amal function) =v(v)
	amal
	amal on
	amal freeze
	amreg
	amplay
	chanan
	chanmv
	amalerr
	channel
	channel n to sprite s
	channel n to bob b
	channel n to screen display d
	channel n to screen offset d
	channel n to screen size s
	channel n to rainbow r
	update every
	rain
	rainbow
	set rainbow
	synchro
	move x
	move on-off
	move freeze
	movon
	anim
	anim on-off
	anim freeze
	track load
	track play
	track loop on-off
	track stop
	important tracker notes:
	sload
	sam swap
	sam swapped
	sam stop
	author note on =col(bob)
	disc info$
	prg state
	bgrab
	prun
	prg first$
	prg next$
	psel$
	getting the system time
	getting the system date
	safe amigados execute
	no icon mask
	rainbow del
	multi wait
	amos to back
	amos to front
	amos here
	amos lock
	amos unlock
	bank swap
	laced
	display height
	ntsc
	request on
	request off
	request wb
	bob-sprite flipping
	hrev block
	vrev block
	(bob) priority reverse on-off
	serial open
	serial close
	serial send
	serial out
	serial get
	serial input$
	serial speed
	serial bits
	serial parity
	serial x
	serial buffer
	serial fast
	serial slow
	serial check
	serial error
	serial sending tips
	dev first$
	dev next$
	set tempras
	rem


